Linear Algebra Lecture Notes

Mohammad Saleh, Email:msaleh@birzeit.edu Mathematics Department, Birzeit University, West Bank, Palestine **These lecture notes is not an alternative for the class lectures**

Chapter 1

Linear system of equations and matrices

1.1 Systems of Equations

Systems of equations are either

- 1. Linear system: If all equations in the system are linear or
- 2. Nonlinear system: At least one of the equations in the system are nonlinear

In this course we study only linear systems.

1.2 A general form of the linear system:

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

, where a_{ij}, b_i are all real numbers, is called an $m \times n$ linear system

Definition 1.2.1. A solution of the above system is a set of real numbers $c_1, c_2, ..., c_n$ such that if substitute $x_i = c_i$ then all equations in the above

system holds denoted by
$$(c_1, c_2, ..., c_n)$$
 or $\begin{pmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \\ c_n \end{pmatrix}$.
Example 1.2.1. $\begin{array}{c} x & -y &= 1 \\ x &+ & 3y &= 5 \end{array}$ has a solution $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

x + 3y = 5 (1) Definition 1.2.2. A linear system is called a square system if m = n and

it is called an $n \times n$ linear system

Definition 1.2.3. A linear system is called **consistent** if it has a solution, and it is called **inconsistent** if it has no solution

Consistent linear systems has either a unique solution or infinite number of solutions

A 2×2 linear system :

Example 1.2.2.
$$\begin{array}{c} x - y = 1 \\ x + 3y = 5 \end{array}$$
 has a unique solution $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Example 1.2.3. $\begin{array}{cccc} x & - & y &= & 1 \\ 2x & - & 2y &= & 2 \end{array}$ has infinite number of solutions

Example 1.2.4. $\begin{array}{cccc} x & - & y &= 1 \\ 2x & - & 2y &= 5 \end{array}$ has no solution

Definition 1.2.4. *Equivalent systems:* Two linear systems are called equivalent systems if they have the same variables(unknowns) and the same solution set.

Operations on the linear systems:

- 1. Interchange two equations
- 2. Multiply an equation by a nonzero constant
- 3. add a number to both sides of an equation (add a multiple of an equation to another equation)

A strict upper triangular system:

- 1. It is a square system
- 2. $a_{k1} = a_{k2} = ... = a_{k,k-1} = 0$ in the *k*th equation (in the *k*-th equation, the coefficients of the first k 1 variables are zeros)
- 3. $a_{kk} \neq 0$ (the coefficient of x_k is nonzero)

Which is of the form

A strict upper triangular system has a unique solution and we solve it by backward substitution.

Example 1.2.5.
$$\begin{array}{cccc} x_1 & -x_2 & +x_3 & = 2\\ 2x_2 & -x_3 & = & 1\\ & & & 2x_3 & = 2\\ has \ a \ solution \ \begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}. \\ \end{array}$$

1.3 1.2. Row Echelon form and solutions of linear systems

Definition 1.3.1. A matrix is an array of numbers or objects arranged in rows and columns denoted by A, B, C, ...

A matrix A with m rows and n columns is called an $m \times n$ matrix read m by n matrix

 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \cdot & & & & \\ \cdot & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$

The entry of a matrix A in the *i*-th row and *j*-th column is called the ij-th entry denoted by a_{ij}

Augmented matrix of a linear system

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3$. .

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Definition 1.3.2. The Augmented matrix of a linear system above de-

noted by $\overline{\mathbf{A}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & |b_1| \\ a_{21} & a_{22} & \dots & a_{2n} & |b_2| \\ \cdot & & & & & \\ \cdot & & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & |b_m \end{pmatrix}$

Elementary row operations:

- 1. Interchange two rows
- 2. Multiply a row by a nonzero constant

3. Replace a row by its sum with a multiple of another row (add a multiple of a one row to another row)

Row Echelon Form (REF)

Example 1.3.1. :
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 is in REF
 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not in REF
 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not in REF
 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not in REF
 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is not in REF
 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is in REF

Definition 1.3.3. An $m \times n$ matrix is in REF iff:

- 1. The first nonzero entry in a nonzero row is 1 called the leading one or the pivot 1
- 2. the leading one in the k-th row is to the right of the leading one in the k-1-row
- 3. Zero rows are below the nonzero rows

Remark 1.3.4. Any matrix can be written in REF using the row operations

Gauss Elimination Method is a method to solve linear systems by using row operations on the augmented matrix \overline{A} of the system to change it in REF

Example 1.3.2. . Use Gauss Elimination method to Solve $x_1 - x_2 + 3x_3 = 2$ $x_1 + 2x_2 - x_3 = 1$ $-x_1 + x_2 - 2x_3 = -2$

$$\begin{aligned} \boldsymbol{Solution} \,\overline{A} &= \begin{pmatrix} 1 & -1 & 3 & |2 \\ 1 & 2 & -1 & |1 \\ -1 & 1 & -2 & |-2 \end{pmatrix} R_2 - R_1, R_3 + R_1 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2 \\ 0 & 3 & -4 & |-1 \\ 0 & 0 & 1 & |0 \end{pmatrix} \\ &\frac{1}{3}R_2 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2 \\ 0 & 1 & \frac{-4}{3} & |\frac{-1}{3} \\ 0 & 0 & 1 & |0 \end{pmatrix} \\ &x_3 &= 0, x_2 &= \frac{-1}{3}, x_1 = \frac{5}{3} \\ &\boldsymbol{Solution} \, \begin{pmatrix} \frac{5}{3} \\ -\frac{1}{3} \\ 0 \end{pmatrix}. \end{aligned}$$

Example 1.3.3. . Use Gauss Elimination method to Solve

$$\begin{aligned} x_1 - x_2 + 3x_3 &= 2\\ x_1 + 2x_2 - x_3 &= 1\\ \textbf{Solution} \ \overline{A} &= \begin{pmatrix} 1 & -1 & 3 & |2\\ 1 & 2 & -1 & |1 \end{pmatrix} R_2 - R_1 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2\\ 0 & 3 & -4 & |-1 \end{pmatrix}\\ \frac{1}{3}R_2 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2\\ 0 & 1 & \frac{-4}{3} & |\frac{-1}{3} \end{pmatrix}\\ x_3 \ is \ free \ , \ x_1, x_2 \ leading \ , \ so \ let \ x_3 &= \alpha \in R, \ then \ form \ equation 2, \ x_2 &= \\ \frac{-1}{3} + \frac{4}{3}\alpha, \ and \ from \ equation 1, \ x_1 &= 2 + x_2 - 3x_3 = 2 + \frac{-1}{3} + \frac{4}{3}\alpha - 3\alpha = \frac{5}{3} - \frac{5}{3}\alpha\\ \textbf{solution} \ \begin{pmatrix} \frac{5}{3} - \frac{5}{3}\alpha\\ -\frac{1}{3} + \frac{4}{3}\alpha\\ \alpha \end{pmatrix}. \end{aligned}$$

Remark 1.3.5. If we have more than one linear systems of the form $(A|b_1), (A|b_2), ..., (A|b_k)$, then we can solve the systems simultaneously by forming the augmented matrix $(A|b_1|b_2|, ..., |b_k)$

Reduced Row Echelon Form (RREF) An $m \times n$ matrix is in RREF iff:

- 1. It is in REF
- 2. The leading 1 is the only nonzero in that column

Example 1.3.4. : $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is in RREF $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is not in RREF

Remark 1.3.6. Any matrix can be written in RREF using the row operations

Gauss-Jordan Elimination Method is a method to solve linear systems by using row operations on the augmented matrix \overline{A} of the system to change it in RREF

Example 1.3.5. . Use Gauss Elimination-Jordan method to Solve

$$\begin{split} x_1 - x_2 + 3x_3 &= 2\\ x_1 + 2x_2 - x_3 &= 1\\ -x_1 + x_2 - 2x_3 &= -2 \\ \textbf{Solution} \,\overline{A} &= \begin{pmatrix} 1 & -1 & 3 & |2\\ 1 & 2 & -1 & |1\\ -1 & 1 & -2 & |-2 \end{pmatrix} R_2 - R_1, R_3 + R_1 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2\\ 0 & 3 & -4 & |-1\\ 0 & 0 & 1 & |0 \end{pmatrix} \\ \frac{1}{3}R_2 \rightarrow \begin{pmatrix} 1 & -1 & 3 & |2\\ 0 & 1 & \frac{-4}{3} & |\frac{-1}{3}\\ 0 & 0 & 1 & |0 \end{pmatrix} R_2 + \frac{4}{3}R_3, R_1 - 3R_3 \rightarrow \\ \begin{pmatrix} 1 & -1 & 0 & |2\\ 0 & 1 & 0 & |\frac{-1}{3}\\ 0 & 0 & 1 & |0 \end{pmatrix} R_1 + R_2 \rightarrow \begin{pmatrix} 1 & 0 & 0 & |\frac{5}{3}\\ 0 & 1 & 0 & |\frac{-1}{3}\\ 0 & 0 & -1 & |0 \end{pmatrix} \\ \textbf{Solution} \begin{pmatrix} \frac{5}{3}\\ -\frac{1}{3}\\ 0 \end{pmatrix}. \end{split}$$

Remark 1.3.7. If in the process of solving a linear system by Gauss elimination or Gauss-Jordan elimination, and the left hand of a row is reduced to a zero row but the right hand is nonzero then the system is inconsistent. That is if we get a row of the form $\begin{bmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then the system is inconsistent.

Definition 1.3.8. The variable that correspond to the leading one are called the leading variables, and the remaining variables, if any, are called free variables.

Remark 1.3.9. A linear system with a free variable is either inconsistent or has infinite number of solutions.

 $\begin{array}{c} x_1-x_2+x_3=2\\ \textbf{Example 1.3.6.} \quad x_1+2x_2-x_3=1 \quad is \ consistent \ with \ x_3 \ free, \ so \ it \ has\\ 2x_1+x_2=3\\ infinite \ solutions\\ x_1-x_2+x_3=2 \end{array}$

but, $x_1 + 2x_2 - x_3 = 1$ is inconsistent with x_3 free. Why? $2x_1 + x_2 = 1$

Overdetermined and underdetermined systems

Definition 1.3.10. An $m \times n$ linear system is called **underdetermined** system if m < n, and it is called **overdetermined** if m > n

Remark 1.3.11. An underdetermined linear system always has a free variable, so it is either inconsistent or it has infinite solutions.

Remark 1.3.12. An overdetermined linear system can't tell. (all cases possible).

Definition 1.3.13. An $m \times n$ linear system is called **homogeneous** if all right hand of every equation is zero. That is the augmented matrix \overline{A} of the linear system is of the form $\overline{A} = (A|0)$, that is $(b_1 = b_2 = ... = b_k = 0)$.

- Remark 1.3.14. 1. A homogeneous linear system is always consistent with $x_1 = x_2 = \dots = x_n = 0$ is a solution called the zero solution or the trivial solution
 - 2. A homogeneous linear system is either has a unique solution (the zero solution) if it has no free variables or it has infinite solutions if it has a free variable.
 - 3. An underdetermined homogeneous linear system always has infinite solutions.

1.4 1.3+1.4 Matrix Algebra.

Recall that a matrix is any array of objects.

A row or a column of a matrix is called a vector and the i-row of a matrix A is denoted by $\overrightarrow{a_i}$ and the i-column of a matrix A is denoted by a_i . The set of all row matrices or the set of all column matrices is called the Euclidean space denoted by either R^n or $R^{1 \times n}$

An $m \times n$ matrix is usually represented by its columns as $a = (a_1, a_2, ..., a_n)$

or by its rows as
$$A = \begin{pmatrix} a_1' \\ \overline{a_2} \\ \cdot \\ \cdot \\ \cdot \\ \overline{a_m} \end{pmatrix}$$

Definition 1.4.1. Equality of matrices: Two matrices A, B are equal iff they the same size and the corresponding entries are equal

Operations on matrices . 1. Scalar multiplication.

Definition 1.4.2. Let A be an $m \times n$ matrix, $c \in R$. Then cA = B, where $b_{ij} = ca_{ij}, \forall i, j$

2. Matrix addition.

Definition 1.4.3. Let A, B be $m \times n$ matrices. Then A + B = C, where $c_{ij} = a_{ij} + b_{ij}, \forall i, j$

Properties of addition and scalar multiplication

Theorem 1.4.4. Let A, B be an $m \times n$ matrices, $\alpha, \beta \in R$. Then

1. $\alpha(A+B) = \alpha A + \alpha B$

2.
$$\alpha\beta(A) = \alpha(\beta A)$$

- 3. A + B = B + A
- 4. A + (B + C) = (A + B) + C
- 5. A + 0 = 0 + A = A

6. A + -A = -A + A = 0

2. Matrix multiplication.

Definition 1.4.5. Let A be $m \times n$, B an $n \times k$ matrices. Then AB = C, where $c_{ij} = \sum_{k=1}^{k=n} a_{ik} b_{kj}$

Example 1.4.1.
$$\begin{pmatrix} 1 & -2 & 3 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -3 & 5 \\ 3 & 2 & 0 \end{pmatrix}$$

Properties of matrix multiplication

Theorem 1.4.6. Let A be $m \times n$, B an $n \times k$, C be $k \times l$ matrices, $\alpha, \beta \in R$. Then

- 1. $\alpha(AB) = A(\alpha B)$
- 2. $AB \neq BA$
- 3. A(BC) = (AB)C
- 4. Let A be $m \times n$, B, C an $n \times k$. Then A(B+C) = AB + AC

Remark 1.4.7. If A an $m \times n$, B an $n \times k$, then $AB = (Ab_1, Ab_2, ..., Ab_k)$ using the columns of B or

$$AB = \begin{pmatrix} \overrightarrow{a_1}B \\ \overrightarrow{a_2}B \\ \cdot \\ \cdot \\ \cdot \\ \overrightarrow{a_n}B \end{pmatrix} \text{ using the rows of } A$$

Remark 1.4.8. 1. If AB = AC then we cannot conclude B = C

Example 1.4.2. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. Then AB = AC but $B \neq C$

2. If
$$AB = 0$$
 then we cannot conclude $A = 0$ or $B = 0$
Example 1.4.3. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ but neither A nor B is a zero matrix

- Remark 1.4.9. 1. If A, B an $n \times n$ upper triangular matrices, then AB is an upper triangular matrix
 - 2. If A, B an $n \times n$ lower triangular matrices, then AB is a lower triangular matrix
 - 3. If A, B an $n \times n$ diagonal matrices, then AB is a diagonal triangular matrix

Linear systems and matrices

A linear system with augmented matrix $\overline{A} = (A|b)$ can be written in

matrix multiplication as Ax = b, where $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$, $x = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & & & \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ \vdots \\ b_m \end{pmatrix}$$

Also, we can write the linear system as Ax = b as $a_1x_1 + a_2x_2 + ... a_nx_n = b$ Remark 1.4.10. 1. A vector X_0 is a solution of a linear system Ax = b iff $AX_0 = b$

- 2. If vectors X_0, X_1 are solutions of a linear system Ax = b. Then $\alpha X_0 + \beta X_1$ is a solution iff $\alpha + \beta = 1$. Since $A(\alpha X_0 + \beta X_1) = b$ iff $\alpha b + \beta b = b$ iff $\alpha + \beta = 1$.
- 3. If vectors X_0, X_1 are solutions of a homogeneous linear system Ax = 0. Then $\alpha X_0 + \beta X_1$ is a solution of Ax = 0 for any $\alpha, \beta \in R$. Since $A(\alpha X_0 + \beta X_1) = \alpha A X_0 + \beta A X_1 = 0$.

Definition. Linear combinations

Definition 1.4.11. Let $a_1, a_2, ..., a_k \in \mathbb{R}^n, c_1, c_2, ..., c_k \in \mathbb{R}$. Then a vector $c_1a_1+c_2a_2+...+c_ka_k$ is called a linear combination of the vectors $a_1, a_2, ..., a_k$

Example 1.4.4. 1. $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is a linear combination of $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, and $b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, since v = 1a + 0b2. Is $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ a linear combination of $a = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Solution. Let $v = c_1a + c_2b$, if the system has a solution then v is a linear combination of a, bSo let $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ We get the linear system whose augmented matrix $\begin{pmatrix} 1 & 1 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}$ and this system has a unique solution $c_2 = 2, c_1 = -1$, so v is a linear

combination of a and b.

Theorem. Consistency of the linear system.

Theorem 1.4.12. A linear system Ax = b is consistent iff b is a linear combination of the columns of A.

Proof.
$$\Rightarrow$$
 Suppose the system $Ax = b$ is consistent, so there exist real numbers $c_1, c_2, ..., c_n$ such that $A\begin{pmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \\ c_n \end{pmatrix} = b$. So $c_1a_1 + c_2a_2 + ... + c_na_n = b$,

and so b is a linear combination of the columns of A

 \Leftarrow Suppose b is a linear combination of the columns of A, so there exist real numbers $c_1, c_2, ..., c_n$ such that $c_1a_1 + c_2a_2 + ... + c_na_n = b$. But the last

equation is
$$c_1a_1 + c_2a_2 + \dots + c_na_n = A \begin{pmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ c_n \end{pmatrix} = b$$
. So $\begin{pmatrix} c_1 \\ c_2 \\ \cdot \\ \cdot \\ \cdot \\ c_n \end{pmatrix}$ is a solution of $Ax = b$

Remark 1.4.13. The proof of the consistency of the linear systems shows that if b is a linear combination of the columns of the A, then the coefficients of the column of A is a solution of the linear system Ax = b.

Example 1.4.5. 1. Let $A_{3\times 3}$, Ax = b, and $b = 2a_1 - 3a_2 + a_3$, then the system is consistent and $\begin{pmatrix} 2\\-3\\1 \end{pmatrix}$ is a solution of Ax = b, but we don't

know if the system has a unique solution or infinite solutions

- 2. Let $A_{2\times3}$, Ax = b, and $b = 2a_1 3a_2 + a_3$, then the system is consistent and $\begin{pmatrix} 2\\ -3\\ 1 \end{pmatrix}$ is a solution of Ax = b, but the system is undetermined and consistent, so it has infinite solutions.
- 3. Let $A3 \times 3$, Ax = 0, and $0 = 2a_1 + 5a_3$, then the system is consistent and $\begin{pmatrix} 2\\0\\5 \end{pmatrix}$ is a non zero solution of the homogeneous Ax = 0, so it has infinite solutions.

Remark 1.4.14. If b can be written in more than way as a linear combination of the columns of the A, then the linear system Ax = b has infinite solutions.

Transpose.

Definition 1.4.15. The transpose of an $m \times n$ matrix A is an $n \times m$ matrix B such that $b_{ij} = b_{ji}, \forall i, j$ denoted by A^t

Definition 1.4.16. An $n \times n$ matrix A is symmetric iff $A^t = A$, and it is skew-symmetric iff $A^t = -A$

Properties of the transpose

- 1. $(A^t)^t = A$
- 2. $(A+B)^t = A^t + B^t$
- 3. $(cA)^t = cA^t, \forall c \in R$
- 4. $(AB)^t = B^t A^t$

- 5. If an $n \times n$ matrices A, B are symmetric, then A + B is symmetric.
- 6. If an $n \times n$ matrices A is symmetric, then $cA, \forall c \in R$ is symmetric.

Example 1.4.6. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, then $A^t = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Special matrices A matrix A is called

- 1. A zero matrix iff all entries are zeros $(a_{ij=0}, \forall i, j)$
- 2. An upper triangular iff A is a square matrix such that $a_{ij} = 0, \forall i > j$
- 3. A lower triangular iff A is a square matrix such that $a_{ij} = 0, \forall i < j$
- 4. A diagonal iff A is a square matrix such that $a_{ij} = 0, \forall i \neq j$
- 5. Identity matrix denoted by I_n is a diagonal matrix such that $\delta_{ii} = 1, \delta_{ij} = 0, \forall i \neq j$

Nonsingular(invertible) matrices.

Definition 1.4.17. A square $n \times n$ matrix A is said to be nonsingular or invertible iff there exists a square $n \times n$ matrix B such that $AB = BA = I_n$, and B is called the inverse of A denoted by A^{-1} , that is $AA^{-1} = A^{-1}A = I_n$. A none invertible matrix is called singular.

Properties of the inverse

- 1. Inverse if it exists is unique
- 2. $(A^{-1})^{-1} = A$
- 3. $(AB)^{-1} = B^{-1}A^{-1}$
- 4. If A is invertible, then A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$

Remark 1.4.18. 1. The sum of invertible need not be invertible.

- 2. If A is invertible and AB = AC then B = C
- 3. From number 3, if A, B are $n \times n$ invertible matrices then AB is invertible

1.5 Elementary matrices and inverses

Definition 1.5.1. A matrix E is called an elementary matrix if it is obtained from I_n by only one row operation.

Example 1.5.1. 1. $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 2. $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 3. $C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Types of (ROW) elementary Matrices:

- 1. **Type I:** E is obtained from I_n by interchanging any two rows of I_n : C
- 2. **Type II:** E is obtained from I_n by multiplying any rows of I_n by a nonzero constant: B
- 3. Type III: E is obtained from I_n by adding a multiple of one row of I_n to another row of I_n : A

Remark 1.5.2. Similarly, we have column elementary matrices by performing similar operations on the columns of the identity matrix. But we focus on the row elementary matrices

Theorem 1.5.3. Multiplying a matrix A from left by an elementary matrix is the same as performing a row operation on A of the same type

Theorem 1.5.4. Multiplying a matrix A from right by a column elementary matrix is the same as performing a column operation on A of the same type

Definition 1.5.5. A matrix A is called row equivalent to a matrix B if A is obtained from B by performing a sequence of row operations on A. Equivalently, if $A = E_1 E_2 \dots E_k B$, where E'_i s are elementary matrices.

Theorem 1.5.6. Any elementary matrix E is invertible and E^{-1} is an elementary matrix of the same type by reversing the operation on I_n

Theorem 1.5.7. Equivalent conditions for nonsingularity of a matrix A. Let A be a square $n \times n$ matrix. Then the following are equivalent (FAE)

- 1. Ais nonsingular
- 2. Ax = 0 has only the zero solution(trivial solution)
- 3. A is row equivalent to I_n

Proof. $1 \Rightarrow 2$. Let A be nonsingular and Ax = 0. Multiply both sides by A^{-1} from left, we get $A^{-1}Ax = A^{-1}0$. So Ix = 0, so x = 0 is the only solution of Ax = 0.

 $2 \Rightarrow 3$. Suppose A is not row equivalent to IA_n , so the reduced row echelon form of A has a free variable and so Ax = 0 has infinite solutions.

 $3 \Rightarrow 1$. Let A be row equivalent to I_n , so there exist elementary matrices $E_1, E_2, ..., E_k$ such that $E_1, E_2, ..., E_k A = I$. So $E_1 E_2 ... E_k = A^{-1}$, and so A is invertible.

Remark 1.5.8. If A is nonsingular, then Ax = b has a unique solution which is $x = A^{-1}b$

Remark 1.5.9. The above theorem gives a strategy to find the inverse of a square matrix if it exist, since if A is nonsingular then A is row equivalent to I_n . So there exist elementary matrices $E_1, ..., E_k$ such that $E_k...E_2E_1A = I_n$, and so $E_k...E_1I_n = A^{-1}$. That is if we perform row operations on A to change it into I_n , then performing the same row operations on the identity matrix I_n we get A^{-1}

 $(A|I) \rightarrow \text{row operations}(I|A^{-1})$

Example 1.5.2. Find the inverse of $A = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & -1 \\ -1 & 4 & -2 \end{pmatrix}$

$$\begin{aligned} R_2 + 4R_3, R_1 - 3R_3 \to \begin{pmatrix} 1 & -1 & 0 & | & \frac{-1}{5} & \frac{3}{5} & \frac{-3}{5} \\ 0 & 3 & 0 & | & \frac{3}{5} & \frac{1}{5} & \frac{4}{5} \\ 0 & 0 & 1 & | & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \\ \end{pmatrix} \\ \frac{1}{3}R_2 \to \begin{pmatrix} 1 & -1 & 0 & | & \frac{-1}{5} & \frac{3}{5} & \frac{-3}{5} \\ 0 & 1 & 0 & | & \frac{1}{5} & \frac{11}{5} & \frac{4}{15} \\ 0 & 0 & 1 & | & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \end{pmatrix} \\ R_1 + R_2 \to \begin{pmatrix} 1 & 0 & 0 & | & 0 & \frac{2}{5} & \frac{-1}{3} \\ 0 & 1 & 0 & | & \frac{1}{5} & \frac{11}{5} & \frac{4}{15} \\ 0 & 0 & 1 & | & \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \end{pmatrix} \\ \text{So } A \text{ is nonsingular and } A^{-1} = \begin{pmatrix} 0 & \frac{2}{5} & \frac{-1}{3} \\ \frac{1}{5} & \frac{115}{5} & \frac{4}{15} \\ \frac{2}{5} & \frac{-1}{5} & \frac{1}{5} \end{pmatrix} \end{aligned}$$

Definition 1.5.10. A matrix A is called row equivalent to a matrix B if A is obtained from B by performing a sequence of row operations on A. Equivalently, if $A = E_1 E_2 \dots E_k B$, where $E'_i s$ are elementary matrices.

Remark 1.5.11. If in the processes of performing row operations on (A|I), one rows of A is reduced to a zero row then A is singular

Example 1.5.3. $\begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & -1 \\ -2 & 2 & -6 \end{pmatrix}$ has no inverse

A rule only for 2×2 matrices.

Let A be 2×2 matrix, say, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then A is invertible iff $ad - cb \neq 0$, and $A^{-1} = \frac{1}{ad-cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Prove this **Example 1.5.4.** 1. $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ is invertible and $A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$, 2. $B = \begin{pmatrix} 2 & 12 \\ 1 & 6 \end{pmatrix}$ is not invertible.

Triangular Factorization.

Definition 1.5.12. If a matrix A is reduced into an upper triangular matrix using **row operations of type III only** then A has a triangular factorization A = LU, where U is upper triangular and L is unit lower triangular.

Remark 1.5.13. Not every matrix has an LU factorization

1. Find the LU factorization of $A = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & -1 \\ -1 & 1 & -2 \end{pmatrix}$ Example 1.5.5.

Solution.
$$\begin{pmatrix} 1 & -1 & 3 \\ 1 & 2 & -1 \\ -1 & 1 & -2 \end{pmatrix} R_2 - R_1, R_3 + R_1 \rightarrow \begin{pmatrix} 1 & -1 & 3 \\ 0 & 3 & -4 \\ 0 & 0 & 1 \end{pmatrix} = U,$$

So,
$$E_1 = I_3(R_2 - R_1) = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,
 $E_1 = I_1(R_1 + R_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$E_{2} = I_{3}(R_{3} + R_{1}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

So, $E_{2}E_{1}A = U$. So $A = (E_{2}E_{1})^{-1}U$

That is $L = (E_2 E_1)^{-1} I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$. That is to get L we perform

row operations on I_3 opposite to the row operations on A(L) is a lower triangular matrix with 1's in the main diagonal and if we perform the row operation $R_i - \alpha R_j$, then $l_{ij} = \alpha$), so $L = I_3(R_2 + R_1, R_3 - R_1) \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

2. Find the LU factorization of $A = \begin{pmatrix} 0 & -1 & 3 \\ 1 & 2 & -1 \\ -1 & 1 & -2 \end{pmatrix}$ if it exists

Solution. A has no LU factorization since we can't use the first row to terminate the first entries in the lower rows.

Exercises.

- 1. Answer the following by true false
 - (a) If A, B are $n \times n$ matrices and AB = 0, then $(A + B)^2 = A^2 + B^2$
 - (b) If A has an LU-factorization and A is singular then U is singular.
 - (c) Let A, B be $n \times n$ symmetric matrices. If AB = BA then AB is symmetric.
 - (d) If A is symmetric and skew symmetric then A must be a zero matrix.(A is skew symmetric if $A^T = -A$).
 - (e) If the system Ax = b is consistent then b is a linear combinations of the columns of A.
 - (f) If A, B are square $n \times n$ matrices and AB = 0, then A or B is singular.
 - (g) If A, B are square $n \times n$ matrices and AB is singular then A or B is singular.
 - (h) If the coefficient matrix of the system AX = b is singular then the system has infinitely many solutions.
 - (i) In the linear system Ax = 0, if $0 = a_1$ then the system has a unique solution.
 - (j) If the row echelon form of the matrix A involves a free variable, then the linear system Ax = b has infinitely many solutions.
 - (k) A square matrix A is nonsingular iff its RREF is the identity matrix.
 - (1) If AB = AC, $A \neq 0$, then C = B.
 - (m) In the linear system AX = b, if b is the first column of A then the system has infinitely many solutions.
- 2. Solve the linear system Ax = b whose augmented matrix $\begin{pmatrix} 1 & 2 & 3 & | & 1 \\ -1 & 1 & 3 & | & 0 \\ 1 & 1 & 0 & | & -1 \end{pmatrix}$

using both Gauss Elimination Method and Gauss Jordan Elimination method

3. Solve the linear system $\begin{array}{c} x_1 - x_2 + x_3 = 2 \\ x_1 + 2x_2 - x_3 = 1 \\ 2x_1 + x_2 = 3 \end{array}$

- 4. Solve the linear system $\begin{array}{c} x_1 x_2 + x_3 = 2 \\ x_1 + 2x_2 x_3 = 1 \\ 2x_1 + x_2 = 1 \end{array}$
- 5. Let $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ -1 & 1 & b & | & a \\ 1 & 1 & 0 & | & 1 \end{pmatrix}$. Find the conditions on a, b so the system is (1) consistent.

tem is (1) consistent, (2) inconsistent

- 6. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}$. Find the inverse of A if it exists. 7. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}$. Find LU-factorization of A
- 8. Let Ax = b be linear system where A is an $n \times n$ singular. What can you say a bout Ax = 0, and $Ax = b, b \in \mathbb{R}^n$.
- 9. Let Ax = 0 be linear homogeneous system where A is an 2×3 nonzero matrix. If $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ are two solutions of the homogeneous system. Find all solutions of Ax = 0.
- 10. Let Ax = b be linear system where A is an 2×3 nonzero matrix. If $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are two solutions of the linear system Ax = b. Find all solutions of Ax = b, and a nonzero solutions of Ax = 0.
- 11. If A, B are square $n \times n$ nonzero matrices such that AB = 0. Show that A and B are singular.
- 12. If A, B are nonzero square $n \times n$ matrices such that AB = 0. Show that the homogeneous system Ax = 0 must have infinite solutions.
- 13. If A, B are nonzero matrices such that AB = 0. Show that the homogeneous system Ax = 0 must have infinite solutions.

14. If A, B are $n \times n$ symmetric. Then AB is symmetric iff AB = BA.

15. If the reduced row echelon form of the augmented matrix of the linear system
$$Ax = b$$
 is $\begin{pmatrix} 1 & 0 & 1 & |2 \\ 0 & 1 & 2 & |-1 \\ 0 & 0 & 0 & |0 \end{pmatrix}$, and $a_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $a_2 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$. Find b.

Chapter 2

Determinants

2.1 Determinants

Definition 2.1.1. If A is an $n \times n$ matrix, then the determinant of A is denoted by det(A) or |A|. If A is a 1×1 , say, $A = (a_{11})$. Then $det(A) = a_{11}$, and if A is a 2×2 matrix, say, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, then $det(A) = a_{11}a_{22} - a_{21}a_{12}$

Example 2.1.1. *1.* Let $A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$, then det(A) = 2(4) - 3(-1) = 11

2. Let A = (-1), then |A| = -1

2.1.1 Cofactor Method

Definition 2.1.2. Let A be an $n \times n$ matrix, and let M_{ij} be an $(n-1) \times (n-1)$ matrix obtained from A by deleting the i – th row and the j – th column of A. Then the minor of a_{ij} is the determinant of M_{ij} , and the cofactor of a_{ij} denoted by $A_{ij} = (-1)^{(i+j)} |M_{ij}|$.

Definition 2.1.3. Let A be an $n \times n$ matrix. Then we define the determinant of A by $|A| = \begin{cases} a_{11}, & n = 1 \\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n}, & n \ge 2 \end{cases}$. (This is called the expansion of the determinant of A along the first row of A).

Theorem 2.1.4. Let A be an $n \times n$ matrix. Then $|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}$. (This is called the expansion of the determinant of A along the i - th row of A).

Theorem 2.1.5. Let A be an $n \times n$ matrix. Then $|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}$. (This is called the expansion of the determinant of A along the j - th column of A).

Mathematical induction

If S(n) is a mathematical statement then this statement is true for every n iff

- 1. S(1) is true
- 2. Assume S(k) is true
- 3. Prove S(k+1) is true

Theorem 2.1.6. Let A be an $n \times n$ matrix. Then $|A| = |A^t|$.

Proof. 1. If n = 1, then $A^t = A$. So $|A| = |A^t|$

2. Assume the result is true for n = k. (That is, if A is of size $k \times k$, then $|A| = |A^t|$)

3. Let A be of size $(k + 1) \times (k + 1)$ and expand |A| on the first row. So $|A| = a_{11}A_{11} + \ldots + a_{1n}A_{1n} = a_{11}A_{11}^t + \ldots + a_{1,k+1}A_{1,k+1}^t = a_{11}^tA_{11}^t + \ldots + a_{k+1,1}^tA_{k+1,1}^t = |A^t|$

Theorem 2.1.7. Let A be an $n \times n$ matrix.

- 1. If A has a zero row or a zero column, then |A| = 0
- 2. If A has two identical rows or two identical columns, then |A| = 0
- *Proof.* 1. If A has a zero row, say i th row, then compute |A| using that row, so $|A| = a_{i1}A_{i1} + \ldots + a_{in}A_{in} = 0 + 0 + \ldots + 0 = 0$
 - 2. We use mathematical induction on the size of the matrix A 1. If n = 2, say $A = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$. Then |A| = ab ab = 0

2. Assume the result is true for n = k (that is if A is of size $k \times k$ with two identical rows then |A| = 0

3. Let A be of size $(k+1) \times (k+1)$ with two identical rows then expand |A| on any row distinct from the identical rows, say row j. So $|A| = a_{j1}A_{j1} + \ldots + a_{j,k+1}A_{j,k+1}$, but now each $A_{j,l}$ is a determinant of matrix of size k with identical rows i, j, so $A_{j,l} = 0, i = 1, ..., k + 1$

Theorem 2.1.8. If A is a triangular matrix, then $|A| = a_{11}a_{22}...a_{nn}$. (That is the determinant is the product of the entries in the main diagonal)

Proof. We use mathematical induction on the size of the matrix A 1. If $n = 2, \text{ say } A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}. \text{ Then } |A| = a_{11}a_{22}$ 2. Assume the result is true for n = k.

3. Let A be of size $(k+1) \times (k+1)$ upper triangular then expand |A| on the first column. So $|A| = a_{11}A_{11}$, but now each A_{11} is a determinant of an upper triangular matrix of size k. So $|A| = a_{11}a_{22}...a_{nn}$

2.2 Properties of the determinant

Theorem 2.2.1. Let A be an $n \times n$ matrix. Then $a_{i1}A_{j1} + a_{i2}A_{j2} + ... + a_{in}A_{jn} = \begin{cases} 0, & i \neq j \\ |A| & i = j \end{cases}$.

Proof. If i = j, then $a_{i1}A_{j1} + a_{i2}A_{j2} + \ldots + a_{in}A_{jn} = a_{i1}A_{i1} + a_{i2}A_{i2} + \ldots + a_{in}A_{in} = |A|$. If $i \neq j$, let A^* be the matrix obtained from A by replacing the j-th row of A by its i-th row. Expand the determinant of A^* using the j-th row. Since A^* has two identical rows, so $|A^*| = 0$. So, $0 = |A^*| = a_{j1}^*A_{j1} + a_{j2}^*A_{j2}^* + \ldots + a_{jn}^*A_{jn}^* = a_{i1}A_{j1} + a_{i2}A_{j2} + \ldots + a_{in}A_{jn}$

2.2.1 Row operations

Theorem 2.2.2. Let A be a quare matrix and B is obtained form A by only one row operation. Then

- 1. **Type I:** Type I (B is obtained by interchanging two rows of A. Then |B| = -|A|
- 2. **Type II:** B is obtained form A by multiplying one row only of A by a nonzero constant, say, α . Then $|B| = \alpha |A|$
- 3. **Type III:** B is obtained by adding a multiple of one row of A to another row of A. Then |B| = |A|

Proof. By MI on the size of the matrix (Exercise)

The above theorem is equivalent to the next theorem.

Theorem 2.2.3. Let A be a square matrix and B = EA, E is an elementary matrix. Then

- 1. Type I: If E is an elementary matrix of type I (E is obtained by interchanging two rows of I_n . Then |B| = -|A|
- 2. **Type II:** If E is an elementary matrix of type II (E is obtained by multiplying one row only of I_n by a nonzero constant, say, α . Then $|B| = \alpha |A|$
- 3. Type III: If E is an elementary matrix of type III (E is obtained by adding a multiple of one row to another row of I_n . Then |B| = |A|

A special case of the above theorem, we get the next two theorems

Theorem 2.2.4. Let E be an elementary matrix. Then

- 1. Type I: If E is an elementary matrix of type I (E is obtained by interchanging two rows of I_n . Then |E| = -1
- 2. **Type II:** If E is an elementary matrix of type II (E is obtained by multiplying one row only of I_n by a nonzero constant, say, α . Then $|E| = \alpha$
- 3. Type III: If E is an elementary matrix of type III (E is obtained by adding a multiple of one row to another row of I_n . Then |E| = 1

Theorem 2.2.5. Let E be an elementary matrix, and A be a matrix of the same size of E. Then |EA| = |E||A|

Theorem 2.2.6. Let $E_1, ..., E_k$ be elementary matrices. Then $|E_1...E_k| = |E_1|...|E_k|$

Proof. $|E_1...E_k| = |E_1|...|E_k| = |E_1||E_2...E_k| = |E_1||E_2||E_3...E_k| = |E_1|...|E_k|.$ OR we can use MI.

Theorem 2.2.7. A square matrix A is nonsingular iff $|A| \neq 0$

Proof. Let A be nonsingular. So A is row equivalent to I_n . Thus there exist elementary matrices $E_1, ..., E_k$ such that $A = E_1, ..., E_k I_n$. So $|A| = |E_1||E_2|...|E_k| \neq 0$

Conversely, if $|A| \neq 0$. Then we use row operations to change A into RREF. So there exist elementary matrices $E_1, ..., E_k$ and a matrix U in RREF such that $A = E_1, ..., E_k U$. Since $|A| \neq 0$. So $|U| \neq 0$, since all E'_i s are invertible, and $|A| = |E_1|...|E_k||U|$. So $U = I_n$, and so A is invertible.

Theorem 2.2.8. If A, B are $n \times n$ matrices, then |AB| = |A||B|

Proof. If A is singular then |A| = 0, and so AB is singular, and so |AB| = |A||B| = 0.

So let A be nonsingular and so A is row equivalent to I_n . Thus $|AB| = |E_1E_2...E_kB| = |E_1||E_2|...|E_k||B| = |E_1E_2...E_k||B| = |A||B|$.

2.3 Adjoint and Cramer's rule

Definition 2.3.1. Let A be $n \times n$ matrix. The adjoint of A denoted by adj(A) is an $n \times n$ whose ij-th entry is A_{ji} that is $adj(A) = C^t$, where $C = \begin{cases} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & & A_{2n} \\ A_{n1} & A_{n2} & & A_{nn} \end{cases}$

Example 2.3.1. Find adj(A) of $A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$ Solution $A_{11} = 4, A_{12} = -3, A_{21} = 1, A_{22} = 2$, so $adj(A) = \begin{pmatrix} 4 & 1 \\ -3 & 2 \end{pmatrix}$

Theorem 2.3.2. Let A be $n \times n$ matrix. Then adjoint of $Aadj(A) = |A|I_n$

Proof. The ij-th entry of $Aadj(A) = a_{i1}A_{j1} + \dots + a_{in}A_{jn} = \begin{cases} |A|, & i = j \\ 0, & i \neq j \end{cases} = |A|I_n$

Theorem 2.3.3. Let A be $n \times n$ nonsingular matrix. Then $A^{-1} = \frac{adj(A)}{|A|}$

Proof. Since A is nonsingular, so A^{-1} exists. Multiply $Aadj(A) = |A|I_n$ from left by A^{-1} , so $adj(A) = |A|A^{-1}$. Since $|A| \neq 0$, so $A^{-1} = \frac{adj(A)}{|A|}$

The above theorem gives another way to find the inverse if it exists, called the cofactor method, or the adjoint method.

Cramer's Rule

Theorem 2.3.4. Let A be $n \times n$ nonsingular matrix. Then the solutions of Ax = b are given by adjoint of $x_i = \frac{|A_{ib}|}{|A|}$, where A_{ib} is a matrix obtained from A by replacing the *i*-th column of A by the column b

 $\begin{array}{l} Proof. \text{ Since } A \text{ is nonsingular, so } A^{-1} \text{ exists. } \text{ Multiply } Ax = b \text{ from right} \\ \text{by } A^{-1}, \text{ so } x = A^{-1}b = \frac{adj(A)}{|A|}b. \text{ So } x = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1i} & A_{2i} & \dots & A_{ni} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} b. \text{ So } x_{i} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} b. \text{ So } x_{i} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{1i} & A_{2i} & \dots & A_{ni} \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} b. \end{array}$

Remark 2.3.5. Cramer's rule is not practical since it can be used only if the system has a unique solution, also the number of operation are very large since it involves computing the determinants.

Example 2.3.2. Use Cramer's rule to solve the linear systems

1.
$$Ax = b$$
, where
 $A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
2. $Ax = b$, where
 $A = \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

Solution (1) |A| = 11, so A is nonsingular, so $A_{1b} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$, $A_{2b} = \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$ So $|A_{1b}| = 11$, $|A_{2b}| = 0$. Thus $x_1 = \frac{|A_{1b}|}{|A|} = 1$, $x_2 = \frac{|A_{2b}|}{|A|} = 0$ (2)|A| = 0, so A is singular, so we can't use Cramer's rule

Exercises.

- 1. Answer the following by true false
 - (a) If A, B are $n \times n$ matrices. Then A, B are nonsingular iff AB is nonsingular
 - (b) If E is an elementary matrix. Then $E^{-1} = E$
 - (c) If E is an elementary matrix. Then $|E^{-1}| = |E|$
 - (d) Let A, B be $n \times n$ equivalent matrices. Then |A| = |B|.
 - (e) Let A be $n \times n$. Then $|\alpha A| = \alpha |A|$.
 - (f) Let A be $n \times n$. Then |adj(A)| = |A|.
- 2. Use Cramer's method to solve the linear system Ax = b whose augmented matrix $\begin{pmatrix} 1 & 2 & 3 & | & 1 \\ -1 & 1 & 3 & | & 0 \\ 1 & 1 & 0 & | & -1 \end{pmatrix}$
- 3. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}$. Find the inverse of A using the adjoint.
- 4. If A is a square $n \times n$ matrix. Show that A is nonsingular iff adj(A) is nonsingular.
- 5. If A is a square $n \times n$ matrix. Show that $|adj(A)| = |A|^{n-1}$.
- 6. If A is a square $n \times n$ matrix. Show that $adj(adj(A)) = |A|^{n-2}A$.

7. Let
$$\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
. Find A

Sample First Exam

Q1 :(20 points) Answer the following statements by true or false

(a) If A, B are square $n \times n$ nonzero matrices such that AB = 0, then A and B are singular.

- (b) If A = LU is the LU-factorizaton and A is singular then U is singular.
- (c) If A, B, AB are $n \times n$ symmetric matrices then AB = BA.
- (d) If A is symmetric and skew symmetric then A must be a zero matrix.(A is skew symmetric if $A^T = -A$).
- (e) If A is an $n \times n$ nonsingular matrix then $det(adj(A)) = (det(A))^{n-1}$.
- (f) If the system Ax = b is consistent then b is a linear combinations of the columns of A.
- (g) If A, B are square $n \times n$ matrices and AB is singular then A and B are singular.
- (h) If A is row equivalent to B then det(A) = det(B).
- (i) If the coefficient matrix of the system AX = b is singular then the system has infinitely many solutions.
- (j) In the linear system Ax = b, if b is a linear combinations of the columns of A then the system has a unique solution.
- (k) If the row echelon form of the matrix A involves a free variable, then the linear system AX=b has infinitely many solutions.
- (1) a square matrix A is nonsingular iff its row echelon form is the identity matrix.
- (m) If AB = AC, $A \neq 0$, then A = B.
- (n) In the linear system Ax = b, if b is the first column of A, then the system has infinitely many solutions.
- (o) If det(A) = det(B), then A = B

Q2 (20points) Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & | & 2 \\ -1 & 1 & 3 & | & 4 \\ 1 & 2 & \alpha & | & \beta \end{pmatrix}$ be the Augmented matrix

of a linear system. Find the values of α, β so that the system

- (i) is consistent
- (ii) inconsistent

Q3 (20points) Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}$ be the coefficient matrix of a linear system AX = b. Find

- (i) LU-factorization of A
- (ii) Use LU-factorization to solve the system AX = b, where $b = (1, 1, 1)^t$
- Q4 (20points) Let A be an $n \times n$ nonsingular matrix
- (i) Show that $adj(adj(A)) = |A|^{n-2}A$.
- (ii) Let A, B be $n \times n$ square symmetric matrices. Show that AB = BA iff AB is symmetric

Chapter 3

Vector Spaces

3.1 Definition and Examples

Definition 3.1.1. A none empty set V with two operations $+: V \times V \rightarrow V$, $\cdot: R \times V \rightarrow V$ is called a vector space iff the following holds

- 1. $a + b \in V, \forall a, b \in V$
- 2. $\alpha a \in V, \forall \alpha \in R, \forall a \in V$
- 3. $0 \in V$ such that $0 + a = a + 0 = a, \forall a \in V$
- 4. $\forall a \in V, -a \in V, and a + -a = -a + a = 0$
- 5. $\forall a, b, c \in V, a + (b + c) = (a + b) + c$
- 6. $\forall a, b \in V, a + b = b + a$
- 7. $(\alpha\beta)a = \alpha(\beta a), \forall \alpha, \beta \in \mathbb{R}, \forall a \in V$
- 8. $\alpha(a+b) = \alpha a + \alpha b, \forall \alpha \in R, \forall a, b \in V$
- 9. $(\alpha + \beta)a = \alpha a + \beta a, \forall \alpha, \beta \in \mathbb{R}, \forall a \in V$
- 10. $1 \cdot a = a, \forall a \in V$
- **Example 3.1.1.** 1. R with usual addition and multiplication is a vector space

- 2. $M_{n \times m} \equiv R^{n \times m}$ is the set of all $m \times n$ matrices under addition and scalar multiplication of matrices is a vector space
- 3. The set of all real valued functions under addition and scalar multiplication of functions: $(f + g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ is a vector space

The zero polynomial denoted by Z(x) or 0(x) is of degree zero

- 4. $C[a,b] = \{f : [a,b] \to R : f \text{ is continuous on } [a,b]\}$ under addition and scalar multiplication of functions: $(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ is a vector space
- 5. $C^{n}[a,b] = \{f : [a,b] \to R : f^{(n)} \text{ is continuous on } [a,b]\}$ under addition and scalar multiplication of functions: $(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ is a vector space
- 6. $P_n = \{f(x) = a_{n-1}x^{n-1} + \dots a_1x + a_0, a'_i s \in R\}$ under addition and scalar multiplication of functions: $(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ is a vector space
- 7. $V = \{f(x) : deg(f) = 3\}$ under addition and scalar multiplication of functions: $(f + g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x)$ is not a vector space
- 8. Q, Z are not vector spaces.
- 9. $\{(0, a) : a \in R\}$ under addition and scalar multiplication of matrices is a vector space
- 10. $\{(1, a) : a \in R\}$ under addition and scalar multiplication of matrices is not a vector space

Theorem 3.1.2. Let V be a vector space. Then

- 1. $0v = 0, \forall v \in V$
- 2. If x + y = 0, then y = -x
- 3. $-1 \cdot v = -v$
- *Proof.* 1. If 0 = 0 + 0, so (0 + 0)v = 0v. Thus 0v + 0v = 0v, add to both sides -0v. So, 0v + 0v + -0v = 0v = + -0v. Thus 0v + 0 = 0. Hence, 0v = 0

- 2. Add -x to both sides of x + y = 0. So, -x + x + y = -x + 0. Thus y = -x.
- 3. 0 = 1 + -1, so (1 + -1)v = 0v = 0 by 1. Thus 1v + -1v = 0, so v + -1v = 0. Add to both sides -v. So, -v + v + -1v = -v. Thus -1v = -v.

3.2 Subspaces and spanning sets

Definition 3.2.1. A none empty subset S of a vector space V is called a subspace of V iff the following holds

- 1. $x + y \in S, \forall x, y \in S$
- 2. $\alpha \cdot x \in S, \forall x \in S, \forall \alpha \in R$

Theorem 3.2.2. Let S be a subspace of a vector space V. Then $\mathbf{0} \in S$

Proof. Since S is a subspace of V, so $S \neq \phi$. Let $x \in S$. So $0x = \mathbf{0} \in S$

Remark 3.2.3. Let S be a subset of a vector space V. If $\mathbf{0} \notin S$, then S is not a subspace of V

- **Example 3.2.1.** 1. $S = \{A_{n \times n} : |A| = 0\}, V = \{A_{n \times n}\}$, is not subspace, since the sum of two singular need not be singular
 - 2. $S = \{A_{n \times n} : |A| \neq 0\}, V = \{A_{n \times n}\}, is not subspace, since the sum of two nonsingular need not be nonsingular. Also the zero matrix is not nonsingular$
 - 3. $S = \{A_{m \times n} : a_{11} = 0, V = \{A_{m \times n}\}$ is a subspace
 - 4. $S = \{A_{n \times n} : A^t = A\}, V = \{A_{n \times n}\}$ is a subspace
 - 5. $S = \{A_{n \times n} : A, \text{ is triangular }\}$ is not a subspace
 - 6. $S = C^{3}[a, b], V = C[a, b]$ is a subspace
 - 7. $S = P_n$, V = C(R) is a subspace, where, C(R) is the set of all continuous functions on R.
 - 8. $S = \{(a,b)^t : a+b = 1, a, b \in R\}, V = \{(a,b)^t : a, b \in R\}$ is not a subspace
 - 9. $\{(1,a)^t : a \in R\}, V = \{(a,b)^t : a, b \in R\}$ is not a subspace

10.
$$\{(0,a)^t : a \in R\}, V = \{(a,b)^t : a, b \in R\}$$
 is a subspace

Proof. HW

_	_	_	л.	

The Null Space of a Matrix

Definition 3.2.4. Let A be $m \times n$ matrix. The null space of A denoted by $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

Theorem 3.2.5. Let A be $m \times n$ matrix. Then N(A) is a subspace of \mathbb{R}^n

Proof. 1. $N(A) \neq \phi$ since $\mathbf{0} \in N(A)$

- 2. Let $x, y \in N(A)$. Then Ax = 0, Ay = 0, so A(x + y) = Ax + Ay = 0 + 0 = 0. So $x + y \in N(A)$
- 3. Let $x \in N(A), \alpha \in R$. Then Ax = 0, so $A(\alpha x) = \alpha Ax = \alpha(0) = 0$, so $\alpha x \in N(A)$ So N(A) is a subspace of R^n

Linear Combinations.

Definition 3.2.6. Let V be a vector space and let $v_1, v_2, ..., v_k \in V, c_1, c_2, ..., c_k \in R$. Then a vector $c_1v_1 + c_2v_2 + ... + c_kv_k$ is called a linear combination of the vectors $v_1, v_2, ..., v_k$. The set of all linear combinations of $v_1, v_2, ..., v_k$ is called the span of $v_1, v_2, ..., v_k$ which is denoted by $Span(v_1, v_2, ..., v_k)$

Example 3.2.2. 1.
$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 is a linear combination of $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$,
and $b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, since $v = 1a + 0b$
2. Is $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ a linear combination of $a = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Solution. Let $v = c_1a + c_2b$, if the system has a solution then v is a linear combination of a, b

So let
$$\begin{pmatrix} 1\\2 \end{pmatrix} = c_1 \begin{pmatrix} 1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\1 \end{pmatrix}$$

We get the linear system whose augmented matrix $\begin{pmatrix} 1 & 1 & | & 1 \\ 0 & 1 & | & 2 \end{pmatrix}$ and this system has a unique solution $c_2 = 2, c_1 = -1$, so v is a linear combination of a and b.

Theorem 3.2.7. Let V be a vector space and let $v_1, v_2, ..., v_k \in V$. Then $Span(v_1, v_2, ..., v_k)$ is a subspace of V

- *Proof.* 1. $Span(v_1, v_2, ..., v_k) \neq \phi$, since $\mathbf{0} = 0v_1 + 0v_2 + ... + 0v_k \in Span(v_1, v_2, ..., v_k)$
 - 2. Let $x, y \in Span(v_1, v_2, ..., v_k)$. Then $x = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_k v_k$, $y = c_1 v_1 + c_2 v_2 + ... + c_k v_k$. So $x + y = (\alpha_1 + c_1)v_1 + (\alpha_2 + c_2)v_2 + ... + (\alpha_k + c_k)v_k \in Span(v_1, v_2, ..., v_k)$
 - 3. $x = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_k v_k, \alpha \in R$. Then $\alpha x = \alpha \alpha_1 v_1 + \alpha \alpha_2 v_2 + ... + \alpha \alpha_k v_k \in Span(v_1, v_2, ..., v_k)$ So $Span(v_1, v_2, ..., v_k)$ is a subspace of V

Theorem 3.2.8. Let V be a vector space and let S, T be subspaces of V. Then

- 1. $S \cap T$ is a subspace of V
- 2. $S \bigcup T$ is not always a subspace of V
- 3. $S + T = \{x + y : x \in S, y \in T\}$ is a subspace of V

Proof. HW

Definition 3.2.9. Let V be a vector space. A set of $v_1, v_2, ..., v_k \in V$ is called a spanning set of V iff every vector $v \in V$ is linear combination of $v_1, v_2, ..., v_k$. That is $V = Span(v_1, v_2, ..., v_k)$

Notation

Let $V = \mathbb{R}^n$, and let e_i be an $n \times 1$ column matrix with 1 in the ith component and zero otherwise, that is e_i is the i - th column of I_n .

- **Example 3.2.3.** 1. $e_1, e_2, ..., e_n$ span \mathbb{R}^n , this is called the standard spanning set for \mathbb{R}^n . Since if $x = (x_1, x_2, ..., x_n)^t \in \mathbb{R}^n$, then $x = x_1e_1 + ... + x_ne_n$
 - 2. $1, x, ..., x^{n-1}$ span P_n , this is called the standard spanning set for P_n . Since if $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} \in P_n$, then $f(x) = a_0(1) + (a_1)x + (a_2)x^2 + ... + (a_{n-1})x^{n-1}$

Example 3.2.4. 1. Does
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 span \mathbb{R}^3

2. Is
$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ a spanning set for \mathbb{R}^2

3. Is $v_1 = x, v_2 = 1, v_3 = 2x - 1$ a spanning set for P_2

Solution.

1. Let $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, and let $v = c_1v_1 + c_2v_2 + c_3v_3$. This system is not

always consistent, why

- 2. Let $v = \begin{pmatrix} a \\ b \end{pmatrix}$, and let $v = c_1v_1 + c_2v_2 + c_3v_3$. This system is always consistent, why
- 3. Let $v = ax + b \in P_2$, and let $v = c_1v_1 + c_2v_2 + c_3v_3$. This system is always consistent, why

Linear System Revisited

Theorem 3.2.10. Let A be an $m \times n$ matrix, and let the linear system Ax = b be consistent with x_0 a solution. Then y is a solution of Ax = b iff $y = x_0 + z$, where $z \in N(A)$

Proof. $A(x_0 + z) = Ax_0 + Az = b + 0 = b$, so $x_0 + z$ is a solution of Ax = b. Also, if y is another solution of Ax = b, then $y - x_0$ is a solution of Ax = 0, since $A(y - x_0) = Ay - Ax_0 = b - b = 0$. So $y - x_0 \in N(A)$. That is there exists $z \in N(A)$ such that $y - x_0 = z$. So $y = x_0 + z$

3.3 Linear Independence

Definition 3.3.1. Let V be a vector space. A set of $v_1, v_2, ..., v_k \in V$ is called linearly independent (li) iff the only solution of $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_k v_k = 0$ is the zero solution $\alpha_1 = \alpha_2 = ... = \alpha_k = 0$. Otherwise, they are linearly dependent (ld).

Example 3.3.1. 1. Is
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ li
2. Is $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ li
3. Is $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ li
4. Is $v_1 = x$, $v_2 = 1$, $v_3 = 2x - 1$ li

Solution.

- 1. Let $c_1v_1 + c_2v_2 + c_3v_3 = 0$. So we solve the homogeneous system $v_1 = \begin{pmatrix} 1 & 1 & 0 & | & 0 \\ 2 & 2 & 0 & | & 0 \\ 3 & 2 & 1 & | & 0 \end{pmatrix}$, and the coefficient matrix is singular so it has infinite solutions. So the vectors are ld
- 2. Let $c_1v_1 + c_2v_2 = 0$. This system has a unique solution. So the vectors are li
- 3. Let $c_1v_1 + c_2v_2 + c_3v_3 = 0$. This system is underdetermined so it has infinite solutions. So the vectors are ld
- 4. Let $v = c_1v_1 + c_2v_2 + c_3v_3$. This system is underdetermined so it has infite solutions. So the vectors are ld

Remark 3.3.2. Any set of vectors that contain the zero vectro are ld. Why?

Theorem 3.3.3. A set of vectors $v_1, v_2, ..., v_k$ in a vector space V are ld iff one of them is a linear combination of the remaining set of vectors. *Proof.* \Rightarrow . Say v_1 is a linear combination of $v_2, ..., v_k$. So there exist constants $c_2, ..., c_k \in R$ such that $v_1 = c_2 v_2 + ... + c_k v_k$, and so $(-1, c_2, ..., c_k)$ is a nonzero solution of $\alpha_1 v_1 + \ldots + \alpha_k v_k = 0$. So v_1, v_2, \ldots, v_k are ld.

 \Leftarrow . Let $v_1, v_2, ..., v_k$ be linearly dependent, so $\alpha_1 v_1 + ... + \alpha_k v_k = 0$ has a nonzero solution, say, $(c_1, c_2, ..., c_k)$, and at least one of the $c'_i s$ is nonzero, say, c_1 . So $v_1 = \frac{-c_2}{c_1}v_2 + \ldots + \frac{-c_k}{c_1}v_k$, and so v_1 is a linear combination of v_2, \ldots, v_k

Theorem 3.3.4. A set of vectors $v_1, v_2, ..., v_k$ in a vector space V are li iff every vector $v \in Span(v_1, v_2, ..., v_k)$ is uniquely written as a linear combination of $v_1, v_2, ..., v_k$.

Proof. \Rightarrow . Suppose $v \in Span(v_1, v_2, ..., v_k)$ are not uniquely written as a linear combination of $v_2, ..., v_k$, say, $v = \alpha_1 v_1 + ... + \alpha_k v_k = \beta_1 v_1 + ... + \beta_k v_k$. So $(\alpha_1 - \beta_1)v_1 + \dots + (\alpha_k - \beta_k)v_k = 0$. So $(\alpha_1 - \beta_1, \dots, \alpha_k - \beta_k)$ is a nonzero solution of $c_1v_1 + ... + c_kv_k = 0$. So $v_1, v_2, ..., v_k$ are ld.

 \leftarrow . Let $\alpha_1 v_1 + ... + \alpha_k v_k = 0$. Since, $0v_1 + ... + 0v_k = 0$, and $0 \in$ $Span(v_1, v_2, ..., v_k)$, so $\alpha_1 = 0, ..., \alpha_k = 0$. Thus, $v_1, ..., v_k$ are li.

Theorem 3.3.5. A set of vectors $v_1, v_2, ..., v_n$ in a vector space \mathbb{R}^n are li iff the matrix $A = (v_1, v_2, ..., v_n)$ is nonsingular.

Proof. $v_1, v_2, ..., v_n$ are li iff $\alpha_1 v_1 + ... + \alpha_n v_n = 0$ has only the zero solution iff A is nonsingular.

Theorem 3.3.6. Let a set of vectors $f_1, f_2, ..., f_n$ in $C^{n-1}[a, b]$ be ld, then

$$A = \begin{pmatrix} f_1 & \cdots & f_n \\ f'_1 & \cdots & f'_n \\ \cdots & \cdots & \\ f_1^{n-1} & \cdots & f_n^{n-1} \end{pmatrix} \text{ is singular}$$

Proof. Suppose $f_1, f_2, ..., f_n$ in $C^{n-1}[a, b]$ be ld, then there exist constants $c_1v_1 + \ldots + c_kv_n$ not all zeros such that $c_1f_1 + \ldots + c_nf_n = 0$. Take all (n-1)derivatives of the previous equation, we get $c_1v_1 + \ldots + c_kv_n$ is a nonzero

solution of
$$\begin{pmatrix} f_1 & \dots & f_n \\ f'_1 & \dots & f'_n \\ \dots & \dots & & \\ f_1^{n-1} & \dots & f_n^{n-1} \end{pmatrix} X = 0.$$
 So $A = \begin{pmatrix} f_1 & \dots & f_n \\ f'_1 & \dots & f'_n \\ \dots & \dots & & \\ \dots & \dots & & \\ f_1^{n-1} & \dots & f_n^{n-1} \end{pmatrix}$ is singular.

singular.

Definition 3.3.7. Let $f_1, f_2, ..., f_n$ in $C^{n-1}[a, b]$. The Wronskian of $f_1, f_2, ..., f_n$ denoted by $W(f_1, f_2, ..., f_n)$ is defined by $W(f_1, f_2, ..., f_n) = |A|$, where $A = \begin{pmatrix} f_1 & \cdots & f_n \\ f'_1 & \cdots & f'_n \\ \cdots & \cdots & \\ \vdots & \vdots & \vdots \\ f_1^{n-1} & \cdots & f_n^{n-1} \end{pmatrix}$.

Theorem 3.3.8. Let $f_1, f_2, ..., f_n$ in $C^{n-1}[a, b]$. If $W(f_1, f_2, ..., f_n) \neq 0$ for some $x \in [a, b]$. Then $f_1, f_2, ..., f_n$ are li

Proof. Follows from the above theorem by contrapositive.

Remark 3.3.9. Let $f_1, f_2, ..., f_n$ in $C^{n-1}[a, b]$. If $W(f_1, f_2, ..., f_n) = 0$. Then test fails

Example 3.3.2. 1. $x^2, 2x^2$ are ld, but $W(x^2, 2x^2) = 0$

- 2. $x^2, x|x|$ over $C^1[-1, 1]$ are li, but $W(x^2, x|x|) = 0$
- 3. Is $x, x^2, x 1, sin^2x, cos^2x, e^x$ li?

3.4 Basis and Dimension

Definition 3.4.1. A set of vectors $v_1, v_2, ..., v_n$ in a vector space V is a basis for V iff:

- 1. $v_1, v_2, ..., v_n$ span V
- 2. $v_1, v_2, ..., v_n$ are li

Example 3.4.1. 1. $e_1, e_2, ..., e_n$ is a basis for \mathbb{R}^n called the standard basis

- 2. 1, x, ..., x^{n-1} is a basis for P_n called the standard basis
- 3. Is E_{ij} such that $e_{ij} = 1$ and 0, otherwise is a standard basis for $\mathbb{R}^{m \times n}$

4.
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 is a basis for \mathbb{R}^3

5. 1+x, x+3 is a basis for P_2

Theorem 3.4.2. Let a set of vectors $v_1, v_2, ..., v_n$ be a spanning set for V. If $w_1, w_2, ..., w_m \in V, m > n$. Then $w_1, w_2, ..., w_m$ are ld

Proof. Let $\alpha_1 w_1 + \ldots + \alpha_m w_k = 0$. Since v_1, v_2, \ldots, v_n span V, so for each w_i , there exist $c_{ij}, j = 1, \ldots, n \in R$ such that $w_i = c_{i1}v_1 + c_{i2}v_2 + \ldots + c_{in}v_n$. Now substitute $w_i = c_{i1}v_1 + c_{i2}v_2 + \ldots + c_{in}v_n$ in $\alpha_1w_1 + \ldots + \alpha_mw_k = 0$, we get an $n \times m$ homogeneous system with m > n. So the system has a nonzero solution. So, w_1, w_2, \ldots, w_m are ld.

Theorem 3.4.3. Let V be a vector space with two basis $v_1, v_2, ..., v_n$, and $w_1, w_2, ..., w_m$. Then m = n.

Proof. Since $v_1, v_2, ..., v_n$ span V, and $w_1, w_2, ..., w_m$ are li, so by previous theorem $m \leq n$. Similarly, since $w_1, w_2, ..., w_m$ span V, and $v_1, v_2, ..., v_n$ are li, so by previous theorem $n \leq m$. So m = n.

Definition 3.4.4. Let V be a nonzero vector space. If V has a finite basis $v_1, v_2, ..., v_n$, then V is called finite dimensional vector space with dimension n, written $\dim(V) = n$. The zero vector space $\{0\}$ has dimension zero with basis ϕ . Otherwise, V is called infinite dimensional, written $\dim(V) = \infty$.

Example 3.4.2. 1. \mathbb{R}^n has dimension n

- 2. P_n has dimension n
- 3. $\mathbb{R}^{m \times n}$ has dimension n.m
- 4. $C^{n}[a, b]$ has dimension ∞

Theorem 3.4.5. Let V be a vector space with dimension n. Then the following are equivalent (FAE)

- 1. $v_1, v_2, ..., v_n$ is a basis
- 2. $v_1, v_2, ..., v_n$ span
- 3. $v_1, v_2, ..., v_n$ are li.

Proof. $1 \Rightarrow 2$. Clearly, if $v_1, v_2, ..., v_n$ is a basis for V, then $v_1, v_2, ..., v_n$ span V.

 $2 \Rightarrow 3$. So let $v_1, v_2, ..., v_n$ span V but ld. So one of them is a linear combination of the others, say, so $v_1 \in Span(v_2, ..., v_n)$. If $v_2, ..., v_n$ are li, then $v_2, ..., v_n$ is a basis for V with n-1 vectors, a contradiction. So $v_2, ..., v_n$ are ld, and so one of this set is a linear combination of the remaining set, say, $v_2 \in Span(v_3, ..., v_n)$. Similarly, if $v_3, ..., v_n$ are li, then $v_3, ..., v_n$ is a basis for V with n-2 vectors, a contradiction. We continue the same process and at some stage, we must get a set which is li and span V that is it is a basis with fewer than n vectors, a contradiction. So, $v_1, v_2, ..., v_n$ are li. $2 \Rightarrow 3$ Let $v_1, v_2, ..., v_n$ be li, but does not span V, so there exists a nonzero vector $u \in V$ and $u \notin span(v_1, v_2, ..., v_n)$. So, $u, v_1, v_2, ..., v_n$ are ld, and so there exist $c_i, j = 1, ..., n+1 \in R$ not all zeros such that $c_1v_1+c_2v_2+...+c_nv_n+c_{n+1}u = 0$. But $c_{n+1} \neq 0$ for if $c_{n+1} = 0$, then $v_1, v_2, ..., v_n$ are ld, a contradiction. But, $c_{n+1} \neq 0$ implies u is a linear combination of $v_1, v_2, ..., v_n$, a contradiction. So, $v_1, v_2, ..., v_n$ are ld, $v_1, v_2, ..., v_n$ and $v_1, v_2, ..., v_n$ are ld, $v_1, v_2, ..., v_n$ are ld, $v_1, v_2, ..., v_n$ are ld.

Remark 3.4.6. Let V be a vector space with dimension n > 0. Then

- 1. A set of $v_1, v_2, ..., v_m, m > n$ is ld.
- 2. A set of $v_1, v_2, ..., v_m, m < n$ can not span V.
- 3. A li set of $v_1, v_2, ..., v_m, m < n$ can be extended to a basis for V.
- 4. A spanning set of $v_1, v_2, ..., v_m, m > n$ can be reduced(pared down) to a basis for V.

CHAPTER 3. VECTOR SPACES

Remark 3.4.7. 1. $[e_1, e_2, ..., e_n]$ is called the standard basis for \mathbb{R}^n .

2. $[1, x, ..., x^{n-1}]$ is called the standard basis for P_n .

3.5 Change of Basis

Definition 3.5.1. Let V be a vector space with an ordered basis $B = [v_1, v_2, ..., v_n]$, and $v \in V$. Then there exist $c_1..., c_n \in R$ such that $v = c_1v_1 + ... + c_nv_n$. The vector $(c_1, ..., c_n)^t \in R^n$ is called the coordinate vector of v with respect to the basis B denoted by $[v]_B$

Now, let V be a vector space with two basis $B = [v_1, v_2, ..., v_n]$, and $S = [w_1, w_2, ..., w_n]$, and $v \in V$. Is there a relation between $[v]_B$, and $[v]_S$. We start with a simple example.

Example 3.5.1. Let $V = R^2$ with basis $[u_1, u_2]$, say, $u_1 = (u_{11}, u_{12})^t$, $u_2 = (u_{21}, u_{22})^t$ and let $v = (x_1, x_2)^t \in R^2$, then there exist $c_1, c_2 \in R$ such that $v = (x_1, x_2)^t = c_1u_1 + c_2u_2$. So, $(u_1 \ u_2) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. That is $\begin{pmatrix} u_{11} \ u_{21} \\ u_{12} \ u_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Let $U = [u_1, u_2]$, then U is called the transition matrix from the basis B into the standard basis $[e_1, e_2]$, and U^{-1} is the transition matrix from the standard basis $[e_1, e_2]$ into the basis $U = [u_1, u_2]$

In general, if $B = [u_1, u_2], S = [w_1, w_2]$ are any two none standard basis of R^2 , let $U_1 = (u_1, u_2)$ be the transition matrix from $B = [u_1, u_2]$ into the standard basis $[e_1, e_2]$, and $U_2 = (w_1, w_2)$ be the transition matrix from $S = [w_1, w_2]$ into the standard basis $[e_1, e_2]$. Then the transition matrix from B into S is $U = U_2^{-1}U_1$

Theorem 3.5.2. Let V be a finite dimensional vector space with dimension n. If $B = [v_1, v_2, ..., v_n]$, $S = [w_1, w_2, ..., w_n]$. Then the transition matrix from the basis B into the basis S is the $n \times n$ nonsingular matrix $U = ([v_1]_S, [v_2]_S, ..., [v_n)_S]$.

Remark 3.5.3. Let V be a finite dimensional vector space with basis B, and let $v_1, ..., v_k \in V$. Then

- 1. $[v_1 + v_2 + \dots + v_k]_B = [v_1]_B + [v_2]_B + \dots + [v_k]_B$
- 2. $v_1, ..., v_k$ are li iff $[v_1]_B, [v_2]_B, ..., [v_k]_B$ are li.

3.6 Row space, Column space, Rank, and Nullity

Definition 3.6.1. Let A be $m \times n$ matrix. Then

- 1. The row space of A is the subspace of \mathbb{R}^n spanned by the rows of A denoted by $\mathbb{R}(A)$, that is $\mathbb{R}(A) = \operatorname{span}[\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_m})$
- 2. The column space of A is the subspace of R^m spanned by the columns of A denoted by C(A), that is $C(A) = span[a_1, a_2, ..., a_m)$
- 3. The null space of A is the subspace of \mathbb{R}^n which is the solution of the homogeneous system Ax = 0 denoted by N(A).
- 4. The nullity of A denoted by Null(A) = dim(N(A)).
- 5. The rank of A denoted by rank(A) = dim(C(A)).

Theorem 3.6.2. Let A, B be $m \times n$ equivalent matrices. Then R(A) = R(B). Consequently, if U is the REF of A, then R(A) = R(U)

Proof. If A, B are row equivalent, then the rows of A are linear combinations of the rows of B, so $R(A) \subset R(B)$. Similarly, the rows of B are linear combinations of the rows of A, so $R(B) \subset R(A)$. So, R(A) = R(B).

Theorem 3.6.3. Let A be $m \times n$ matrix. Then dim(R(A)) = dim(C(A)).

Theorem 3.6.4. Let A be $m \times n$ matrix. Then Rank(A) + Null(A) = n.

Proof. Let U be the REF of A. Then dim(R(A)) = dim(R(U)) is the number of leading variables, and the dim(N(A)) = dim(N(U)) is the number of free variables. So, Rank(A) + Null(A) = n

Theorem 3.6.5. Let A be $m \times n$ matrix. If U is the REF of A, then the columns of A that correspond to the leading 1's in U is a basis for C(A)

Example 3.6.1. Find
$$R(A), C(A), N(A), null(A), rank(A)$$
 of $A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 1 & 2 & 0 & 1 \\ 2 & 4 & 0 & 0 \\ 1 & 2 & 1 & -1 \end{pmatrix}$

Solution. REF of A is $U = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. So,

- 1. Basis for R(A) is (1, 2, 0, -1), (0, 0, 1, 0), (0, 0, 0, 2)
- 2. Basis for C(A) is $(1, 1, 2, 1)^t, (0, 0, 0, 1)^t, (-1, 1, 0, -1)^t$
- 3. Rank(A) = 3
- 4. Null(A) = 1
- 5. $N(A) = (-2\alpha, \alpha, 0, 0)^t, \alpha \in R$ with basis $(-2, 1, 0, 0)^t$

Back to the linear system Ax = b

Recall that the consistency theorem of the linear system Ax = b says that the linear system Ax = b is consistent iff b is a linear combination of the columns of A iff $b \in C(A)$. Consequently we get the following theorem

Theorem 3.6.6. Let A be $m \times n$ matrix, $b \in \mathbb{R}^m$. Then

- 1. The linear system ax = b is consistent for every $b \in \mathbb{R}^m$ iff $C(A) = \mathbb{R}^m$.
- 2. The columns of A are li, iff the linear system Ax = b is either inconsistent or has a unique solution.

Theorem 3.6.7. Let A be $n \times n$ matrix. Then A is nonsingular iff the columns of A form a basis for \mathbb{R}^n .

Sample Exam Q1: (45 points)

- (1) Let V be a vector space. Mark each of the following statements by true or false.
 - (a) For any $v \in V, -v \in V$. T
 - (b) For any $v, w \in V, v \cdot w \in V$. F
 - (c) For any $v \in V$, $2v \in V$. T
 - (d) For any $v \in V$, $0v \in R$. F
 - (e) V could be equal ϕ . F
- (2) Let V be a vector space, v_1, v_2, v_3, v_4 span V. Mark each of the following statements by true or false.
 - (a) dim(V) = 4. F
 - (b) $dim(V) \ge 4$. F
 - (c) $dim(V) \le 4$. T
 - (d) any set of more than 5 vector in V are linearly dependent. T
 - (e) Any basis of V has exactly 4 vectors. F
- (3) Let V be a vector space, dim(V) = 5. Mark each of the following statements by true or false.
 - (a) If v_1, v_2, v_3, v_4, v_5 in V, then v_1, v_2, v_3, v_4, v_5 is a basis for V. F
 - (b) If v_1, v_2 in V, then v_1, v_2 are linearly independent. F
 - (c) If v_1, v_2 in V, then v_1, v_2 can't span V. T
 - (d) If v_1, v_2, v_3, v_4, v_5 in V, and $v \in V$, then $v \in Span(v_1, v_2, v_3, v_4, v_5)$. F
 - (e) If B is a basis for V, then $v_B \in \mathbb{R}^5$. T
- (4) Let A be 3×3 matrix such that |A| = 0. Mark each of the following statements by true or false.
 - (a) $\operatorname{Rank}(A) = 3$. F
 - (b) Rank(A) < 3. T

- (c) Null(A) = 1. F
- (d) $N(A) = \{0\}$. F
- (e) $\operatorname{Null}(A) = 0$. F
- (5) Let A, B be $n \times n$ nonzero matrices such that AB = 0. Mark each of the following statements by true or false.
 - (a) Ax = 0 has a nonzero solution. T
 - (b) Ran(A) = Rank(B). F
 - (c) $Ran(B) \leq Null(A)$. T
 - (d) $Ran(A) \leq Null(B)$
 - (e) Ax = 0 has only the zero solution. F
- (6) Let A, B be subspaces of a vector space V. Mark each of the following statements by true or false.
 - (a) $A \cap B$ is a subspace of V. T
 - (b) $A \bigcup B$ is a subspace of V. F
 - (c) $A + B = \{x + y; x \in A, y \in B\}$ is a subspace of V. T
 - (d) $2A = \{2x : x \in A\}$ is a subspace of V. T
 - (e) $A \cap B \neq \phi$. T
 - **Q2:** (10 points) Let A, B be subspaces of a vector space V.
 - (a) Show that $A \cap B$ is a subspace of VSee notes
 - (b) Let A be $m \times n$ matrix. Show that N(A) is a subspace of \mathbb{R}^n . See notes

Q3: (10 points)

Let $V = P_3$ and let $S = \{f \in V : f(0) = 0, f(1) = 0\}.$

- (a) Show S is a subspace of VDo it
- (b) Find a basis for $S x^2 x$

Q4: (20 points)

Let
$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 4 \\ 1 & -1 & 2 & -1 & 6 \\ 3 & 1 & 6 & 1 & 14 \end{pmatrix}$$
. Find

- (a) A basis for row space of A
- (b) A basis for column space of A
- (c) A basis for null space of A
- (d) Rank(A)

Q5: (25 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x - z, y - x, x - y)

- (a) Show T is a linear transformation
- (b) Find the matrix representation of T with respect to the standard basis of R^2, R^3
- (c) Find a basis for ImmT
- (d) Find a basis for kerT
- (e) Find all $v \in R^2 : T(v) = (1, 1, 1)$

Q6: (10 points) Let $V = P_2$, B = [1 - x, 2 + x], F = [1 + 2x, 2 - 3x]

- (a) Find the transition matrix S from B into F
- (b) Use the transition matrix S to find the vector v where $v_{[B]} = (2, 5)^t$

Chapter 4

Linear Transformations

4.1 Definitions, Examples, and Basic Properties

Definition 4.1.1. Let V, W be vector spaces. A mapping (a function) $L: V \to W$ is called a linear transformation (LT) iff

- (a) $L(v_1 + v_2) = L(v_1) + L(v_2), \forall v_1, v_2 \in V$
- (b) $L(\alpha v) = \alpha L(v), \forall v \in V, \forall \alpha \in R$
- **Example 4.1.1.** (a) $L : \mathbb{R}^2 \to \mathbb{R}^2, L((x, y)^t) = (x, -y)^t$ is a linear transformation (reflection on X-axis)
 - (b) $L: \mathbb{R}^2 \to \mathbb{R}^2, L((x, y)^t) = (-x, y)^t$ is a linear transformation (reflection on y-axis)
- (c) $L: \mathbb{R}^2 \to \mathbb{R}^2, L((x, y)^t) = (x^2, y)^t$ is not a linear transformation
- (d) Let V be a vector space, and let $v_0 \in V$, $L: V \to V$, $L(v) = v + v_0$ is a linear transformation iff $v_0 = 0$
- (e) $L: \mathbb{R}^2 \to \mathbb{R}^2, L((x,y)^t) = (x, y+1)^t$ is not a linear transformation

Theorem 4.1.2. Let V, W be vector spaces, and let $L : V \to W$ be a linear transformation. Then

(a) $L(0_V) = 0_W$

 $\begin{array}{ll} (b) \ \ L(v_1 - v_2) = L(v_1) - L(v_2), \forall v_1, v_2 \in V \\ (c) \ \ L(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n) = \alpha_1 L(v_1) + \alpha_2 L(v_2) + \ldots + \alpha_n L(v_n), \forall v_1, v_2, \ldots, v_n \in V, \forall \alpha_1, \alpha_2, \ldots, \alpha_n \in R \end{array}$

Proof. (a)
$$L(0_V) = L(00_V) = 0L(0_V) = 0_W$$

(b) $L(v_1 - v_2) = L(v_1 + -1v_2) = L(v_1) + L(-1v_2) = L(v_1) - 1L(v_2) = L(v_1) - L(v_2), \forall v_1, v_2 \in V$
(c) BY MI

Remark 4.1.3. Let V, W be vector spaces, and let $L : V \to W$ be a mapping. If $L(0_V) \neq 0_W$, then L is not a linear transformation

Theorem 4.1.4. Let V, W be vector spaces, and let $L : V \to W$ be a mapping. Then L is a linear transformation iff $L(\alpha v_1 + \beta v_2) = \alpha L(v_1) + \beta L(v_2), \forall v_1, v_2 \in V, \forall \alpha, \beta \in R$

Example 4.1.2. (a) $L: C[0,1] \to R^2, L(f(x)) = \begin{pmatrix} \int_0^1 f(x) dx \\ f(0) \end{pmatrix}$ is a

linear transformation

- (b) $L: P_3 \to P_2, L(f(x)) = f'(x)$ is a linear transformation
- (c) Let A be $m \times n$ matrix, and let $L : \mathbb{R}^n \to \mathbb{R}^m, L(X) = AX, \forall X \in \mathbb{R}^n$ is a linear transformation

Remark 4.1.5. Let V, W be vector spaces, and let V be a finite dimensional vector space with basis $B = [v_1, ..., v_n]$, and let $L : V \to W$ be a LT. Then L is completely determined by the basis B. That if $L(v_1), ..., L(v_n)$ are given then for any $v \in V, v = c_1v_1 + ... + c_nv_n$, and so $L(v) = c_1L(v_1) + ... + c_nL(v_n)$

4.1.1 Kernel and images

Definition 4.1.6. Let $L: V \to W$ be a linear transformation. Then

- (a) The kernel of L denoted by $kerL = \{v \in V : L(v) = 0_W\}$
- (b) The image (or the range) of L denoted by ImmL (or L(V) or R_L) is defined by $L(V) = \{w \in W : w = L(v) \text{ for some } v \in V\}$

Theorem 4.1.7. Let $L: V \to W$ be a linear transformation. Then

- (a) kerL is a subspace of V
- (b) L(V) is a subspace of W
- Proof. (a) 1. $0 \in kerL$, since L(0) = 02. Let $v_1, v_2 \in KerL$. Then $L(v_1) = L(v_2) = 0$, so $L(v_1 + v_2) = L(v_1) + L(v_2) = 0 + 0 = 0$. Hence, $v_1 + v_2 \in KerL$ 3. Let $v \in kerL, \alpha \in R$. Then $L(\alpha v) = \alpha L(v) = \alpha 0 = 0$, so $\alpha v \in KerL$. Thus KerL is a subspace of V
- (b) 1. $0 \in ImmL$, since L(0) = 02. Let $w_1, w_2 \in ImmL$. So there exist $v_1, v_2 \in V$ such that $w_1 = L(v_1), w_2 = L(v_2)$, so $w_1 + w_2 = L(v_1) + L(v_2) = L(v_1 + v_2) \in L(V)$. 3. Let $w \in ImmL, \alpha \in R$. So there exist $v \in V$ such that w = L(v). Then $\alpha w = \alpha L(v) = L(\alpha v) \in ImmL$. Thus ImmL is a subspace of W

Example 4.1.3. Find the kernel and image of the following linear transformations

(a)
$$L: P_2 \to R^2, L(f(x)) = \begin{pmatrix} \int_0^1 f(x) dx \\ f(0) \end{pmatrix}$$

(b) $L: P_3 \to P_2, L(f(x)) = f'(x)$
(c) $L: R^4 \to R^2, L((x_1, x_2, x_3, x_4)^t) = (x_1 + x_2 + x_3, x_4)^t$

Solution:

(a) 1.
$$KerL = \{f(x) = ax + b : L(f(x)) = \begin{pmatrix} \int_0^1 f(x)dx \\ f(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.
So $\begin{pmatrix} \frac{a}{2} + b \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. So $a = b = 0$. Thus $KerL = Z(x) = 0(x)$
2. $ImmL = \{(x, y)^t \in R^2 : (x, y)^t = L(ax + b) = \begin{pmatrix} \frac{a}{2} + b \\ b \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. So, a basis for $L(P_2)$ is $\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ which is a basis for R^2 . So, $ImmL = R^2$

- (b) $L: P_3 \to P_2, L(f(x)) = f'(x)$ 1. $KerL = \{f(x): L(ax^2 + bx + c) = 2ax + b = 0\}$. So a = b = 0. Thus KerL = f(x) = c2. $ImmL = \{(g(x) \in P_2: g(x) = L(ax^2 + bx + c) = 2ax + b.$ So, a basis for $L(P_3)$ is 2x, 1 which is a basis for P_2 . So, $ImmL = P_2$
- (c) 1. $KerL = \{(x_1, x_2, x_3, x_4)^t : L((x_1, x_2, x_3, x_4)^t) = (x_1 + x_2 + x_3, x_4)^t = (0, 0)^t\}$. So, $x_4 = 0, x_1 = -x_2 x_3$. So $KerL = (-x_2 x_3, x_2, x_3, 0)^t$, and so a basis for KerL is $(-1, 1, 0, 0)^t, (-1, 0, 1, 0)^t$ 2. $ImmL = (x, y)^t = (x_1 - x_2 + x_3, x_4)^t = x_1(1, 0)^t + x_2(-1, 0)^t + x_3(1, 0)^t + x_4(0, 1)^t$ with basis $(1, 0)^t, (0, 1)^t$. So, $ImmL = R^2$

4.2 Matrix Representation

Theorem 4.2.1. Let V, W be finite vector spaces with basis $E = [v_1, ..., v_n], F = [w_1, ..., w_m]$, respectively, and let $L : V \to W$ be a linear transformation. Then there exists an $m \times n$ matrix A called the matrix representation of L, with respect to the basis E, F, such that for any $v \in V$, $[L(v)]_F = A[v]_E$. Moreover, $A = ([L(v_1)]_F, [L(v_2)]_F, ..., [L(v_n)]_F)$

Example 4.2.1. Find the matrix representation of the following linear transformations

- (a) $L: P_2 \to R^2, L(f(x)) = \begin{pmatrix} \int_0^1 f(x) dx \\ f(0) \end{pmatrix}$ with respect to the standard basis
- (b) $L: P_3 \to P_2, L(f(x)) = f'(x)$ with respect to the standard basis
- (c) $L: P_3 \rightarrow P_2, L(f(x)) = f'(x)$ with respect to the basis $[1-x, 2x, x^2 + x], [1, x]$
- (d) $L: P_3 \rightarrow P_2, L(f(x)) = f'(x)$ with respect to the basis $[1-x, 2x, x^2 + x], [x, 1]$
- (e) $L: R^4 \to R^2, L((x_1, x_2, x_3, x_4)^t) = (x_1 x_2 + x_3, x_4)^t$ with respect to the standard basis

Solution:

(a)
$$A = (L(1)_{[e_1,e_2]}, L(x)_{[e_1,e_2]}) = ((1,1)_{[e_1,e_2]}^t, (\frac{1}{2},0)_{[e_1,e_2]}^t) = \begin{pmatrix} 1 & \frac{1}{2} \\ 1 & 0 \end{pmatrix}.$$

(b) $A = (L(1)_{[1,x]}, L(x)_{[1,x]}, L(x^2)_{[1,x]}) = (0_{[1,x]}, 1_{[1,x]}, 2x_{[1,x]}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$

(c)
$$A = (L(1-x)_{[1,x]}, L(2x)_{[1,x]}, L(x^2+x)_{[1,x]}) =$$

 $\begin{pmatrix} -1_{[1,x]}, 2_{[1,x]}, (2x+1)_{[1,x]} \end{pmatrix} =$
 $\begin{pmatrix} -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
(d) $A = (L(1-x)_{[x,1]}, L(2x)_{[x,1]}, L(x^2+x)_{[x,1]}) =$
 $\begin{pmatrix} -1_{[x,1]}, 2_{[x,1]}, (2x+1)_{[x,1]} \end{pmatrix} =$
 $\begin{pmatrix} 0 & 0 & 2 \\ -1 & 2 & 1 \end{pmatrix}$.

(e)
$$A = (L(e_1)_{[e_1,e_2]}, L(e_2)_{[e_1,e_2]}, L(e_3)_{[e_1,e_2]}, L(e_4)_{[e_1,e_2]}) = ((1,0)_{[e_1,e_2]}^t, (-1,0)_{[e_1,e_2]}^t, (1,0)_{[e_1,e_2]}^t, (0,1)_{[e_1,e_2]}^t) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Chapter 5

Inner Products

Chapter 6

Eigenvalues

6.1 Definitions, Examples, and Basic Properties

Definition 6.1.1. Let A be a square $n \times n$ matrix. A nonzero vector $\mathbf{x} \in \mathbb{R}^n$ is called an eigenvector of A iff there exists a scalar $\lambda \in \mathbb{R}$ such that $A\mathbf{x} = \lambda \mathbf{x}$, and λ is called an the eigenvalue of A corresponding to the eigenvector \mathbf{x} .

Now how to find the eigenvalues an eigenvectors of a square matrix ALet A be a square $n \times n$ matrix. Then the following are equivalent

- (a) A nonzero eigenvector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of A corresponding to the eigenvalue $\lambda \in \mathbb{R}$.
- (b) $A\mathbf{x} = \lambda \mathbf{x}$
- (c) $A\mathbf{x} \lambda I_n \mathbf{x} = 0$
- (d) $(A \lambda I_n)\mathbf{x} = 0$
- (e) The homogeneous system $(A \lambda I_n)\mathbf{x} = 0$ has a nonzero solution \mathbf{x}
- (f) $N(A \lambda I_n) \neq \{0\}$
- (g) $(A \lambda I_n)$ is singular
- (h) $|A \lambda I_n| = 0$

Definition 6.1.2. Let A be a square $n \times n$ matrix. The equation $|A - \lambda I_n| = 0$ is called the characteristic equation of A, and the polynomial $p_A(\lambda) = |A - \lambda I_n|$ is called the characteristic polynomial of A.

Theorem 6.1.3. Let A be a square $n \times n$ matrix. Then the eigenvalues of A are the solutions of $|A - \lambda I_n| = 0$ and the corresponding eigenvectors of an eigenvalue λ is the solution of $(A - \lambda I_n)x = 0$, that is the eigenvalues are $N(A - \lambda I_n)x = 0$ and it is called the eigenspace of λ

Example 6.1.1. Find the eigenvalues and the corresponding eigenvector of $A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$

Solution. We solve $|A - \lambda I| = 0$, so we get $\lambda = 1, \lambda = 2$ To find the corresponding eigenvectors, we solve the homogeneous system $(A - \lambda I_n)x = 0$

- (a) For $\lambda = 1$, $(A 1.I_n)x = 0$, so we solve $\begin{pmatrix} 0 & 3 \\ 0 & 1 \end{pmatrix}x = 0$. We get $x = (1,0)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 1$.
- (b) For $\lambda = 2$, $(A 2.I_n)x = 0$, so we solve $\begin{pmatrix} -1 & 3 \\ 0 & 0 \end{pmatrix}x = 0$. We get $x = (3, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 2$.

Example 6.1.2. Find the eigenvalues and the corresponding eigenvector of $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$

Solution. We solve $|A - \lambda I| = 0$, so we get $(1 - \lambda)(1 - \lambda) - 2 = 0$. So, $\lambda^2 - 2\lambda - 1 = 0$. By the quadratic formulae, we get $\lambda = 1 \pm \sqrt{2}$ To find the corresponding eigenvectors we solve the homogeneous system $(A - \lambda I_n)x = 0$

(a) For $\lambda = 1 + \sqrt{2}$, we solve $\begin{pmatrix} -\sqrt{2} & 2\\ 1 & -\sqrt{2} \end{pmatrix} x = 0, \sqrt{2}R_2 + R_1 \Rightarrow \begin{pmatrix} -\sqrt{2} & 2\\ 0 & 0 \end{pmatrix}$. We get $x = (\sqrt{2}, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 1 + \sqrt{2}$.

(b) For $\lambda = 1 - \sqrt{2}$. We solve $\begin{pmatrix} \sqrt{2} & 2\\ 1 & \sqrt{2} \end{pmatrix} x = 0$. We get $x = (-\sqrt{2}, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 1 - \sqrt{2}$.

Example 6.1.3. Find the eigenvalues and the corresponding eigenvector of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Solution. We solve $|A - \lambda I| = 0$, so we get $(1 - \lambda)(1 - \lambda) - 1 = 0$. So, $\lambda^2 - 2\lambda = 0$. So, $\lambda = 0, 2$

To find the corresponding eigenvectors, we solve the homogeneous system $(A - \lambda I_n)x = 0$

- (a) For 0, we solve $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} x = 0$. We get $x = (-1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 0$.
- (b) For 2. We solve $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} x = 0$. We get $x = (1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 2$.

Similar matrices

Definition 6.1.4. A square $n \times n$ matrices A, B are called similar matrices iff there exists a nonsingular matrix X such that $A = XBX^{-1}$.

Theorem 6.1.5. Let A, B be a square $n \times n$ similar matrices then A, B have the same eigenvalues.

Proof. Enough to show A, B have the same characteristic polynomials. But $P_A(\lambda) = |A - \lambda I_n| = |XBX^{-1} - \lambda I_n| = |XBX^{-1} - \lambda XX^{-1}| = |X(B - \lambda I)X^{-1}| = |B - \lambda I_n| = P_B(\lambda).$

Remark 6.1.6. Let A, B be a square $n \times n$ similar matrices. Then

- (a) |A| = |B|
- (b) A, B have the same eigenvalues, but need not have the same eigenvectors.

Definition 6.1.7. Let A be a square $n \times n$ matrix, the trace of A denoted by tr(A) is the sum of the entries in the main diagonal.

Theorem 6.1.8. Let A be a square $n \times n$ matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Then

(a) $|A| = \lambda_1 \dots \lambda_n$ (b) $tr(A) = \lambda_1 + \dots + \lambda_n$

Theorem 6.1.9. Let A be a square $n \times n$ matrix. Then A is singular iff 0 is an eigenvalue

Theorem 6.1.10. Let A be a square $n \times n$ matrix. Then A and A^t have the same eigenvalues

Theorem 6.1.11. Let A be an $n \times n$ matrix. If λ is an eigenvalue of A. If $n \in Z^+$, then λ^n is an eigenvalue of A^n with the same eigenvectors.

Example 6.1.4. Find the eigenvalues and the corresponding eigenvector of A^{100} if $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Solution. From Example 6.1.3 above, the eigenvalues and the corresponding eigenvectors of A are: $\lambda = 0, 2$ with $x = (-1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 0$, and $x = (1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 2$. So the eigenvalues of A^{100} are $0^{100} = 0$ with $x = (-1, 1)^t$ an eigenvector, and 2^{100} with $x = (1, 1)^t$ an eigenvector. Also, $A^{100} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2^{100} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{100} \\ 2^{100} \end{pmatrix}$

Theorem 6.1.12. Let A be a square nonsingular $n \times n$ matrix. If λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with the same eigenvectors.

Definition 6.1.13. Let A be a square $n \times n$ matrix, and let λ be an eigenvalue of A. Then

- (a) The algebraic multiplicity of λ denoted by alg(λ) is the number of how many λ is repeated.
- (b) The geometric multiplicity of λ denoted by gem (λ) is the number of li eigenvectors of λ , that is gem $(\lambda) = dim N(A \lambda I)$

6.1.1 Complex eigenvalues

Recall that a complex number is of the from x + yi where $x, y \in R, i^2 = -1$. If z = a + bi, then the conjugate of z denoted by $\overline{z} = a - bi$

Theorem 6.1.14. (Fundamental theorem of algebra) Let $f(z) = c_n z^n + ... + c_1 z + c_0, c'_i s \in C$ be a complex polynomial. Then f(z) has exactly n roots counting multiplicity.

Theorem 6.1.15. Let $f(z) = c_n z^n + ... + c_1 z + c_0, c'_i s \in R$ be a complex polynomial with real entries. If z_0 is a root of f(z), then $\overline{z_0}$ is a root

Theorem 6.1.16. Let A be a square $n \times n$ matrix with real entries, and let λ be an eigenvalue of A with an eigenvector x. Then $\overline{\lambda}$ is an eigenvalue of A with eigenvector \overline{x}

Example 6.1.5. Find the eigenvalues and the corresponding eigenvector of $A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$

Solution. We solve $|A - \lambda I| = 0$, so we get $(1 - \lambda)(-1 - \lambda) + 2 = 0$. So, $\lambda^2 + 1 = 0$. So, $\lambda = \mp i$

To find the corresponding eigenvectors, we solve the homogeneous system $(A - \lambda I_n)x = 0$

- (a) For *i*, we solve $\begin{pmatrix} 1-i & -2 \\ 1 & -1-i \end{pmatrix} x = 0$, perform $(1-i)R_2 R 1$. We get $x = (1+i, 1)^t$ an eigenvector of *A* corresponding to the eigenvalue $\lambda = i$.
- (b) $x = (1 i, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = -i$. Do it similarly.

6.2 Diagonalization: section3 in the book

Definition 6.2.1. A square $n \times n$ matrix A is called diagonalizable iff A is similar to a diagonal matrix D, that iff there exist a nonsingular matrix X, and a diagonal matrix D such that $A = XDX^{-1}$, and X is called the matrix that diagonalize A. A matrix that is not diagonalizable is called defective.

Theorem 6.2.2. The eigenvectors corresponding to distinct eigenvalues are li

Theorem 6.2.3. A square $n \times n$ matrix A is diagonalizable iff A has n li eigenvectors.

Theorem 6.2.4. If all the eigenvalues of a matrix A are distinct, then A is diagonalizable

Remark 6.2.5. Let an $n \times n$ matrix A be diagonalizable. The proof of the above theorem gives a technique to find $X, D : A = XDX^{-1}$ as follows, let the eigenvalues of A be $\lambda_1, ..., \lambda_n$ counting multiplicity with corresponding eigenvectors $X_1, ..., X_n$. Take $X = (X_1, ..., X_n), D =$ $diag(\lambda_1, ..., \lambda_n)$, then $A = XDX^{-1}$

Example 6.2.1. Is $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ diagonalizable, if yes find X, D such that $A = XDX^{-1}$

Solution. The eigenvalues of A are $\lambda = 0, 2$ which are distinct, so A is diagonalizable

To find the corresponding eigenvectors, we solve the homogeneous system $(A - \lambda I_n)x = 0$

- (a) For 0, we get $x = (-1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 0$.
- (b) For 2, we get $x = (1, 1)^t$ an eigenvector of A corresponding to the eigenvalue $\lambda = 2$.

Let $X = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$