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Chapter 1

Linear system of equations and
matrices

1.1 Systems of Equations

Systems of equations are either

1. Linear system: If all equations in the system are linear

or

2. Nonlinear system: At least one of the equations in the system are
nonlinear

Example 1.1.1. :
x − y = 1
2x + 3y = 2

is linear

x − y = 1
2x2 + 3y = 2

is nonlinear linear

In this course we study only linear systems.
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1.2 A general form of the linear system:

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
a31x1 + a32x2 + ...+ a3nxn = b3

.

.

.

.
am1x1 + am2x2 + ...+ amnxn = bm

, where aij, bi are all real numbers, is called an m× n linear system

Definition 1.2.1. A solution of the above system is a set of real numbers
c1, c2, ..., cn such that if substitute xi = ci then all equations in the above

system holds denoted by (c1, c2, ..., cn) or


c1
c2
.
.
.
cn

.

Example 1.2.1.
x − y = 1
x + 3y = 5

has a solution

(
2
1

)
.

Definition 1.2.2. A linear system is called a square system if m = n and
it is called an n× n linear system

Definition 1.2.3. A linear system is called consistent if it has a solution,
and it is called inconsistent if it has no solution

Consistent linear systems has either a unique solution or infinite num-
ber of solutions

A 2× 2 linear system :

Example 1.2.2.
x − y = 1
x + 3y = 5

has a unique solution

(
2
1

)
.

Example 1.2.3.
x − y = 1
2x − 2y = 2

has infinite number of solutions
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Example 1.2.4.
x − y = 1
2x − 2y = 5

has no solution

Definition 1.2.4. Equivalent systems: Two linear systems are called
equivalent systems if they have the same variables(unknowns) and the same
solution set.

Operations on the linear systems:

1. Interchange two equations

2. Multiply an equation by a nonzero constant

3. add a number to both sides of an equation ( add a multiple of an
equation to another equation)

A strict upper triangular system:

1. It is a square system

2. ak1 = ak2 = .. = ak,k−1 = 0 in the kth equation (in the k−th equation,
the coefficients of the first k − 1 variables are zeros )

3. akk 6= 0 ( the coefficient of xk is nonzero)

Which is of the form

a11x1 +a12x2 +...... +a1nxn = b1
a22x2 +..... +a2nxn = b2

a33x3 +..... +a3nxn = b3
.
.
.

annxn = bn

A strict upper triangular system has a unique solution and we
solve it by backward substitution.

Example 1.2.5.
x1 −x2 +x3 = 2

2x2 −x3 = 1
2x3 = 2

has a solution

 2
1
1

.
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1.3 1.2. Row Echelon form and solutions of

linear systems

Definition 1.3.1. A matrix is an array of numbers or objects arranged in
rows and columns denoted by A,B,C, ...

A matrix A with m rows and n columns is called an m × n matrix read
m by n matrix

A =


a11 a12 ... a1n
a21 a22 ... a2n
.
.
.
am1 am2 ... amn


The entry of a matrix A in the i−th row and j−th column is called the

ij−th entry denoted by aij
Augmented matrix of a linear system
a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
a31x1 + a32x2 + ...+ a3nxn = b3

.

.

.

.
am1x1 + am2x2 + ...+ amnxn = bm

Definition 1.3.2. The Augmented matrix of a linear system above de-

noted by A =


a11 a12 ... a1n |b1
a21 a22 ... a2n |b2
.
.
.
am1 am2 ... amn |bm


Elementary row operations:

1. Interchange two rows

2. Multiply a row by a nonzero constant
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3. Replace a row by its sum with a multiple of another row ( add a multiple
of a one row to another row)

Row Echelon Form (REF)

Example 1.3.1. : A =

 1 0 2 1
0 1 1 2
0 0 0 1

 is in REF

A =

 1 0 2 1
0 0 0 0
0 0 0 1

 is not in REF

A =

 0 0 1 1
0 1 1 2
0 0 0 1

 is not in REF

A =

 0 0 1 1
0 0 0 0
0 0 0 1

 is not in REF

A =

 0 0 0 0
0 0 0 0
0 0 0 0

 is in REF

Definition 1.3.3. An m× n matrix is in REF iff:

1. The first nonzero entry in a nonzero row is 1 called the leading one or
the pivot 1

2. the leading one in the k−th row is to the right of the leading one in the
k − 1-row

3. Zero rows are below the nonzero rows

Remark 1.3.4. Any matrix can be written in REF using the row operations

Gauss Elimination Method is a method to solve linear systems by
using row operations on the augmented matrix A of the system to change it
in REF

Example 1.3.2. . Use Gauss Elimination method to Solve
x1 − x2 + 3x3 = 2
x1 + 2x2 − x3 = 1
−x1 + x2 − 2x3 = −2
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Solution A =

 1 −1 3 |2
1 2 −1 |1
−1 1 −2 | − 2

R2−R1, R3+R1 →

 1 −1 3 |2
0 3 −4 | − 1
0 0 1 |0


1
3
R2 →

 1 −1 3 |2
0 1 −4

3
|−1
3

0 0 1 |0


x3 = 0, x2 = −1

3
, x1 = 5

3

Solution

 5
3
−1
3

0

.

Example 1.3.3. . Use Gauss Elimination method to Solve
x1 − x2 + 3x3 = 2
x1 + 2x2 − x3 = 1

Solution A =

(
1 −1 3 |2
1 2 −1 |1

)
R2 −R1 →

(
1 −1 3 |2
0 3 −4 | − 1

)
1
3
R2 →

(
1 −1 3 |2
0 1 −4

3
|−1
3

)
x3 is free , x1, x2 leading , so let x3 = α ∈ R, then form equation2, x2 =

−1
3

+ 4
3
α, and from equation1, x1 = 2 +x2−3x3 = 2 + −1

3
+ 4

3
α−3α = 5

3
− 5

3
α

solution

 5
3
− 5

3
α

−1
3

+ 4
3
α

α

.

Remark 1.3.5. If we have more than one linear systems of the form (A|b1), (A|b2), ..., (A|bk),
then we can solve the systems simultaneously by forming the augmented ma-
trix (A|b1|b2|, ..., |bk)

Reduced Row Echelon Form (RREF) An m × n matrix is in
RREF iff:

1. It is in REF

2. The leading 1 is the only nonzero in that column

Example 1.3.4. : A =

 1 0 0 1
0 1 1 2
0 0 0 0

 is in RREF

A =

 1 0 0 1
0 0 0 1
0 0 0 0

 is not in RREF
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A =

 0 0 1 1
0 1 1 2
0 0 0 1

 is not in RREF

A =

 1 0 1 1
0 0 0 0
0 0 0 1

 is not in RREF

A =

 0 0 0 0
0 0 0 0
0 0 0 0

 is in RREF

Remark 1.3.6. Any matrix can be written in RREF using the row operations

Gauss-Jordan Elimination Method is a method to solve linear sys-
tems by using row operations on the augmented matrix A of the system to
change it in RREF

Example 1.3.5. . Use Gauss Elimination-Jordan method to Solve
x1 − x2 + 3x3 = 2
x1 + 2x2 − x3 = 1
−x1 + x2 − 2x3 = −2

Solution A =

 1 −1 3 |2
1 2 −1 |1
−1 1 −2 | − 2

R2−R1, R3+R1 →

 1 −1 3 |2
0 3 −4 | − 1
0 0 1 |0


1
3
R2 →

 1 −1 3 |2
0 1 −4

3
|−1
3

0 0 1 |0

R2 + 4
3
R3, R1 − 3R3 → 1 −1 0 |2

0 1 0 |−1
3

0 0 1 |0

R1 +R2 →

 1 0 0 |5
3

0 1 0 |−1
3

0 0 −1 |0


Solution

 5
3
−1
3

0

.

Remark 1.3.7. If in the process of solving a linear system by Gauss elimi-
nation or Gauss-Jordan elimination, and the left hand of a row is reduced
to a zero row but the right hand is nonzero then the system is inconsistent.
That is if we get a row of the form

[
0 0 ... 0|1

]
, then the system is

inconsistent.
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Definition 1.3.8. The variable that correspond to the leading one are called
the leading variables, and the remaining variables, if any, are called free
variables.

Remark 1.3.9. A linear system with a free variable is either inconsistent or
has infinite number of solutions.

Example 1.3.6.
x1 − x2 + x3 = 2
x1 + 2x2 − x3 = 1

2x1 + x2 = 3
is consistent with x3 free, so it has

infinite solutions

but,
x1 − x2 + x3 = 2
x1 + 2x2 − x3 = 1

2x1 + x2 = 1
is inconsistent with x3 free. Why?

Overdetermined and underdetermined systems

Definition 1.3.10. . An m× n linear system is called underdetermined
system if m < n, and it is called overdetermined if m > n

Remark 1.3.11. An underdetermined linear system always has a free variable,
so it is either inconsistent or it has infinite solutions.

Remark 1.3.12. An overdetermined linear system can’t tell. ( all cases pos-
sible).

Definition 1.3.13. . An m×n linear system is called homogeneous if all
right hand of every equation is zero. That is the augmented matrix A of the
linear system is of the form A = (A|0), that is (b1 = b2 = ... = bk = 0).

Remark 1.3.14. 1. A homogeneous linear system is always consistent with
x1 = x2 = ... = xn = 0 is a solution called the zero solution or the trivial
solution

2. A homogeneous linear system is either has a unique solution ( the zero
solution) if it has no free variables or it has infinite solutions if it has a
free variable.

3. An underdetermined homogeneous linear system always has infinite
solutions.
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1.4 1.3+1.4 Matrix Algebra.

Recall that a matrix is any array of objects.
A row or a column of a matrix is called a vector and the i−row of a

matrix A is denoted by −→ai and the i−column of a matrix A is denoted by
ai. The set of all row matrices or the set of all column matrices is called the
Euclidean space denoted by either Rn or R1×n

Anm×nmatrix is usually represented by its columns as a = (a1, a2, ..., an)

or by its rows as A =



−→a1−→a2
.
.
.
−→am


Definition 1.4.1. Equality of matrices: Two matrices A,B are equal iff
they the same size and the corresponding entries are equal

Operations on matrices .
1. Scalar multiplication.

Definition 1.4.2. Let A be an m × n matrix, c ∈ R. Then cA = B, where
bij = caij,∀i, j

2. Matrix addition.

Definition 1.4.3. Let A,B be m × n matrices. Then A + B = C, where
cij = aij + bij,∀i, j

Properties of addition and scalar multiplication

Theorem 1.4.4. Let A,B be an m× n matrices, α, β ∈ R. Then

1. α(A+B) = αA+ αB

2. αβ(A) = α(βA)

3. A+B = B + A

4. A+(B+C)=(A+B)+C

5. A+ 0 = 0 + A = A
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6. A+−A = −A+ A = 0

2. Matrix multiplication.

Definition 1.4.5. Let A be m × n, B an n × k matrices. Then AB = C,
where cij =

∑k=n
k=1 aikbkj

Example 1.4.1.

(
1 −2 3
−1 1 2

) 1 −1 2
2 1 0
1 0 1

 =

(
0 −3 5
3 2 0

)
Properties of matrix multiplication

Theorem 1.4.6. Let A be m×n, B an n×k, C be k× l matrices, α, β ∈ R.
Then

1. α(AB) = A(αB)

2. AB 6= BA

3. A(BC) = (AB)C

4. Let A be m× n, B,C an n× k. Then A(B + C) = AB + AC

Remark 1.4.7. If A an m × n, B an n × k, then AB = (Ab1, Ab2, ..., Abk)
using the columns of B or

AB =



−→a1B−→a2B
.
.
.
−→anB

 using the rows of A

Remark 1.4.8. 1. If AB = AC then we cannot conclude B = C

Example 1.4.2. Let A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
, C =

(
0 0
1 1

)
.

Then AB = AC but B 6= C

2. If AB = 0 then we cannot conclude A = 0 or B = 0

Example 1.4.3. Let A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
. Then AB =(

0 0
0 0

)
but neither A nor B is a zero matrix
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Remark 1.4.9. 1. If A,B an n× n upper triangular matrices, then AB is
an upper triangular matrix

2. If A,B an n×n lower triangular matrices, then AB is a lower triangular
matrix

3. If A,B an n × n diagonal matrices, then AB is a diagonal triangular
matrix

Linear systems and matrices
A linear system with augmented matrix A = (A|b) can be written in

matrix multiplication as Ax = b, where A =


a11 a12 ... a1n
a21 a22 ... a2n
.
.
.
am1 am2 ... amn

, x =


x1
x2
.
.
.
xn

,b =


b1
b2
.
.
.
bm


Also, we can write the linear system as Ax = b as a1x1+a2x2+...anxn = b

Remark 1.4.10. 1. A vector X0 is a solution of a linear system Ax = b iff
AX0 = b

2. If vectors X0, X1 are solutions of a linear system Ax = b. Then αX0 +
βX1 is a solution iff α+β = 1. Since A(αX0 +βX1) = b iff αb+βb = b
iff α + β = 1.

3. If vectors X0, X1 are solutions of a homogeneous linear system Ax = 0.
Then αX0 + βX1 is a solution of Ax = 0 for any α, β ∈ R. Since
A(αX0 + βX1) = αAX0 + βAX1 = 0.

Definition. Linear combinations

Definition 1.4.11. Let a1, a2, ..., ak ∈ Rn, c1, c2, ..., ck ∈ R. Then a vector
c1a1+c2a2+ ...+ckak is called a linear combination of the vectors a1, a2, ..., ak
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Example 1.4.4. 1. v =

 1
2
3

 is a linear combination of a =

 1
2
3

,

and b =

 0
0
0

, since v = 1a+ 0b

2. Is v =

(
1
2

)
a linear combination of a =

(
1
0

)
, and b =

(
1
1

)
Solution. Let v = c1a + c2b, if the system has a solution then v is a
linear combination of a, b

So let

(
1
2

)
= c1

(
1
0

)
+c2

(
1
1

)
We get the linear system whose augmented matrix

(
1 1 | 1
0 1 | 2

)
and

this system has a unique solution c2 = 2, c1 = −1, so v is a linear
combination of a and b.

Theorem. Consistency of the linear system.

Theorem 1.4.12. A linear system Ax = b is consistent iff b is a linear
combination of the columns of A.

Proof. ⇒ Suppose the system Ax = b is consistent, so there exist real num-

bers c1, c2, ..., cn such that A


c1
c2
.
.
.
cn

 = b. So c1a1 + c2a2 + ... + cnan = b,

and so b is a linear combination of the columns of A
⇐ Suppose b is a linear combination of the columns of A, so there exist

real numbers c1, c2, ..., cn such that c1a1 + c2a2 + ...+ cnan = b. But the last

equation is c1a1 + c2a2 + ...+ cnan = A


c1
c2
.
.
.
cn

 = b. So


c1
c2
.
.
.
cn

 is a solution

of Ax = b
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Remark 1.4.13. The proof of the consistency of the linear systems shows that
if b is a linear combination of the columns of the A, then the coefficients of
the column of A is a solution of the linear system Ax = b.

Example 1.4.5. 1. Let A3×3, Ax = b, and b = 2a1 − 3a2 + a3, then the

system is consistent and

 2
−3
1

 is a solution of Ax = b, but we don’t

know if the system has a unique solution or infinite solutions

2. Let A2×3, Ax = b, and b = 2a1−3a2 +a3 , then the system is consistent

and

 2
−3
1

 is a solution of Ax = b, but the system is undetermined

and consistent, so it has infinite solutions.

3. Let A3× 3, Ax = 0, and 0 = 2a1 + 5a3 , then the system is consistent

and

 2
0
5

 is a non zero solution of the homogeneous Ax = 0, so it

has infinite solutions.

Remark 1.4.14. If b can be written in more than way as a linear combination
of the columns of the A, then the linear system Ax = b has infinite solutions.

Transpose.

Definition 1.4.15. The transpose of an m×n matrix A is an n×m matrix
B such that bij = bji,∀i, j denoted by At

Definition 1.4.16. An n × n matrix A is symmetric iff At = A, and it is
skew-symmetric iff At = −A

Properties of the transpose

1. (At)t = A

2. (A+B)t = At +Bt

3. (cA)t = cAt,∀c ∈ R

4. (AB)t = BtAt
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5. If an n× n matrices A,B are symmetric, then A+B is symmetric.

6. If an n× n matrices A is symmetric, then cA, ∀c ∈ R is symmetric.

Example 1.4.6. If A =

 1 0 0
0 1 0
1 0 1

, then At =

 1 0 1
0 1 0
0 0 1


Special matrices
A matrix A is called

1. A zero matrix iff all entries are zeros (aij=0, ∀i, j

2. An upper triangular iff A is a square matrix such that aij = 0,∀i > j

3. A lower triangular iff A is a square matrix such that aij = 0,∀i < j

4. A diagonal iff A is a square matrix such that aij = 0,∀i 6= j

5. Identity matrix denoted by In is a diagonal matrix such that δii =
1, δij = 0,∀i 6= j

Nonsingular(invertible) matrices.

Definition 1.4.17. A square n × n matrix A is said to be nonsingular or
invertible iff there exists a square n× n matrix B such that AB = BA = In,
and B is called the inverse of A denoted by A−1, that is AA−1 = A−1A = In.
A none invertible matrix is called singular.

Properties of the inverse

1. Inverse if it exists is unique

2. (A−1)−1 = A

3. (AB)−1 = B−1A−1

4. If A is invertible, then At is invertible and (At)−1 = (A−1)t

Remark 1.4.18. 1. The sum of invertible need not be invertible.

2. If A is invertible and AB = AC then B = C

3. From number 3, if A,B are n × n invertible matrices then AB is in-
vertible



CHAPTER 1. LINEAR SYSTEM OF EQUATIONS AND MATRICES 16

1.5 Elementary matrices and inverses

Definition 1.5.1. A matrix E is called an elementary matrix if it is obtained
from In by only one row operation.

Example 1.5.1. 1. A =

 1 0 3
0 1 0
0 0 1



2. B =

 1 0 0
0 −3 0
0 0 1



3. C =

 0 0 1
0 1 0
1 0 0


Types of (ROW) elementary Matrices:

1. Type I: E is obtained from In by interchanging any two rows of In :
C

2. Type II: E is obtained from In by multiplying any rows of In by a
nonzero constant: B

3. Type III: E is obtained from In by adding a multiple of one row of
In to another row of In : A

Remark 1.5.2. Similarly, we have column elementary matrices by performing
similar operations on the columns of the identity matrix. But we focus on
the row elementary matrices

Theorem 1.5.3. Multiplying a matrix A from left by an elementary matrix
is the same as performing a row operation on A of the same type

Theorem 1.5.4. Multiplying a matrix A from right by a column elementary
matrix is the same as performing a column operation on A of the same type

Definition 1.5.5. A matrix A is called row equivalent to a matrix B if
A is obtained from B by performing a sequence of row operations on A.
Equivalently, if A = E1E2...EkB, where E ′is are elementary matrices.
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Theorem 1.5.6. Any elementary matrix E is invertible and E−1 is an ele-
mentary matrix of the same type by reversing the operation on In

Theorem 1.5.7. Equivalent conditions for nonsingularity of a matrix A.
Let A be a square n× n matrix. Then the following are equivalent (FAE)

1. Ais nonsingular

2. Ax = 0 has only the zero solution(trivial solution)

3. A is row equivalent to In

Proof. 1⇒ 2. Let A be nonsingular and Ax = 0. Multiply both sides by A−1

from left, we get A−1Ax = A−10. So Ix = 0, so x = 0 is the only solution of
Ax = 0.

2 ⇒ 3. Suppose A is not row equivalent to IAn, so the reduced row
echelon form of A has a free variable and so Ax = 0 has infinite solutions.

3⇒ 1. Let A be row equivalent to In, so there exist elementary matrices
E1, E2, ..., Ek such that E1, E2, ..., EkA = I. So E1E2...Ek = A−1, and so A
is invertible.

Remark 1.5.8. If A is nonsingular, then Ax = b has a unique solution which
is x = A−1b

Remark 1.5.9. The above theorem gives a strategy to find the inverse of a
square matrix if it exist, since if A is nonsingular then A is row equivalent to
In. So there exist elementary matrices E1, ..., Ek such that Ek...E2E1A = In,
and so Ek...E1In = A−1. That is if we perform row operations on A to change
it into In, then performing the same row operations on the identity matrix
In we get A−1

(A|I)→ row operations(I|A−1)

Example 1.5.2. Find the inverse of A =

 1 −1 3
1 2 −1
−1 4 −2


Solution.

 1 −1 3 | 1 0 0
1 2 −1 | 0 1 0
−1 4 −2 | 0 0 1

R2−R1, R3+R1 →

 1 −1 3 | 1 0 0
0 3 −4 | −1 1 0
0 3 1 | 1 0 1


R3−R2 →

 1 −1 3 | 1 0 0
0 3 −4 | −1 1 0
0 0 5 | 2 −1 1

 1
5
R3 →

 1 −1 3 | 1 0 0
0 3 −4 | −1 1 0
0 0 1 | 2

5
−1
5

1
5
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R2 + 4R3, R1 − 3R3 →

 1 −1 0 | −1
5

3
5

−3
5

0 3 0 | 3
5

1
5

4
5

0 0 1 | 2
5

−1
5

1
5


1
3
R2 →

 1 −1 0 | −1
5

3
5

−3
5

0 1 0 | 1
5

1
15

4
15

0 0 1 | 2
5

−1
5

1
5


R1 +R2 →

 1 0 0 | 0 2
5

−1
3

0 1 0 | 1
5

1
15

4
15

0 0 1 | 2
5
−1
5

1
5


So A is nonsingular and A−1 =

 0 2
5

−1
3

1
5

1
15

4
15

2
5
−1
5

1
5


Definition 1.5.10. A matrix A is called row equivalent to a matrix B if
A is obtained from B by performing a sequence of row operations on A.
Equivalently, if A = E1E2...EkB, where E ′is are elementary matrices.

Remark 1.5.11. If in the processes of performing row operations on (A|I),
one rows of A is reduced to a zero row then A is singular

Example 1.5.3.

 1 −1 3
1 2 −1
−2 2 −6

 has no inverse

A rule only for 2× 2 matrices.

Let A be 2×2 matrix,say, A =

(
a b
c d

)
, then A is invertible iff ad−cb 6=

0, and A−1 = 1
ad−cb

(
d −b
−c a

)
. Prove this

Example 1.5.4. 1. A =

(
2 3
1 4

)
is invertible and A−1 = 1

5

(
4 −3
−1 2

)
,

2. B =

(
2 12
1 6

)
is not invertible.

Triangular Factorization.

Definition 1.5.12. If a matrix A is reduced into an upper triangular matrix
using row operations of type III only then A has a triangular factor-
ization A = LU , where U is upper triangular and L is unit lower triangular.
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Remark 1.5.13. Not every matrix has an LU factorization

Example 1.5.5. 1. Find the LU factorization of A =

 1 −1 3
1 2 −1
−1 1 −2


if it exists

Solution.

 1 −1 3
1 2 −1
−1 1 −2

R2 − R1, R3 + R1 →

 1 −1 3
0 3 −4
0 0 1

 =

U ,

So, E1 = I3(R2 −R1) =

 1 0 0
−1 1 0
0 0 1

,

E2 = I3(R3 +R1) =

 1 0 0
0 1 0
1 0 1

.

So, E2E1A = U . So A = (E2E1)
−1U .

That is L = (E2E1)
−1I3 =

 1 0 0
1 1 0
−1 0 1

. That is to get L we perform

row operations on I3 opposite to the row operations on A(L is a lower
triangular matrix with 1′s in the main diagonal and if we perform the
row operation Ri−αRj, then lij = α), so L = I3(R2 +R1, R3−R1)→ 1 0 0

1 1 0
−1 0 1



2. Find the LU factorization of A =

 0 −1 3
1 2 −1
−1 1 −2

 if it exists

Solution. A has no LU factorization since we can’t use the first row
to terminate the first entries in the lower rows.
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Exercises.

1. Answer the following by true false

(a) IfA,B are n× n matrices and AB = 0, then (A+B)2 = A2 +B2

(b) If A has an LU -factorization and A is singular then U is singular.

(c) Let A,B be n × n symmetric matrices. If AB = BA then AB is
symmetric.

(d) If A is symmetric and skew symmetric then A must be a zero
matrix.( A is skew symmetric if AT = −A).

(e) If the system Ax = b is consistent then b is a linear combinations
of the columns of A.

(f) If A,B are square n × n matrices and AB = 0, then A or B is
singular.

(g) If A,B are square n×n matrices and AB is singular then A or B
is singular.

(h) If the coefficient matrix of the system AX = b is singular then the
system has infinitely many solutions.

(i) In the linear system Ax = 0, if 0 = a1 then the system has a
unique solution.

(j) If the row echelon form of the matrix A involves a free variable,
then the linear system Ax = b has infinitely many solutions.

(k) A square matrix A is nonsingular iff its RREF is the identity
matrix.

(l) If AB = AC, A 6= 0, then C = B.

(m) In the linear system AX = b, if b is the first column of A then the
system has infinitely many solutions.

2. Solve the linear systemAx = b whose augmented matrix

 1 2 3 | 1
−1 1 3 | 0
1 1 0 | −1


using both Gauss Elimination Method and Gauss Jordan Elimination
method

3. Solve the linear system
x1 − x2 + x3 = 2
x1 + 2x2 − x3 = 1

2x1 + x2 = 3
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4. Solve the linear system
x1 − x2 + x3 = 2
x1 + 2x2 − x3 = 1

2x1 + x2 = 1

5. Let A =

 1 2 3 | 1
−1 1 b | a
1 1 0 | 1

. Find the conditions on a, b so the sys-

tem is (1) consistent, (2) inconsistent

6. Let A =

 1 2 3
−1 1 3
1 1 0

. Find the inverse of A if it exists.

7. Let A =

 1 2 3
−1 1 3
1 1 0

. Find LU -factorization of A

8. Let Ax = b be linear system where A is an n × n singular. What can
you say a bout Ax = 0, and Ax = b, b ∈ Rn.

9. Let Ax = 0 be linear homogeneous system where A is an 2× 3 nonzero

matrix. If

 1
−1
1

 ,

 1
2
1

 are two solutions of the homogeneous

system. Find all solutions of Ax = 0.

10. Let Ax = b be linear system where A is an 2 × 3 nonzero matrix. If 1
−1
1

 ,

 1
0
1

 are two solutions of the linear system Ax = b. Find

all solutions of Ax = b, and a nonzero solutions of Ax = 0.

11. If A,B are square n × n nonzero matrices such that AB = 0. Show
that A and B are singular.

12. If A,B are nonzero square n × n matrices such that AB = 0. Show
that the homogeneous system Ax = 0 must have infinite solutions.

13. If A,B are nonzero matrices such that AB = 0. Show that the homo-
geneous system Ax = 0 must have infinite solutions.
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14. If A,B are n× n symmetric. Then AB is symmetric iff AB = BA.

15. If the reduced row echelon form of the augmented matrix of the linear

system Ax = b is

 1 0 1 |2
0 1 2 | − 1
0 0 0 |0

, and a1 =

 1
2
3

, a2 =

 3
−2
1

.

Find b.



Chapter 2

Determinants

2.1 Determinants

Definition 2.1.1. If A is an n × n matrix, then the determinant of A is
denoted by det(A) or |A|. If A is a 1×1, say, A = (a11). Then det(A) = a11,

and if A is a 2 × 2 matrix, say, A =

(
a11 a12
a21 a22

)
, then det(A) = a11a22 −

a21a12

Example 2.1.1. 1. Let A =

(
2 −1
3 4

)
, then det(A) = 2(4) − 3(−1) =

11

2. Let A =
(
−1

)
, then |A| = −1

2.1.1 Cofactor Method

Definition 2.1.2. Let A be an n×n matrix, and let Mij be an (n−1)×(n−1)
matrix obtained from A by deleting the i− th row and the j − th column of
A. Then the minor of aij is the determinant of Mij, and the cofactor of aij
denoted by Aij = (−1)(i+j)|Mij|.

Definition 2.1.3. Let A be an n×n matrix. Then we define the determinant

of A by |A| =

{
a11, n = 1

a11A11 + a12A12 + ...+ a1nA1n, n ≥ 2

}
. (This

is called the expansion of the determinant of A along the first row of A).

23
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Theorem 2.1.4. Let A be an n × n matrix. Then |A| = ai1Ai1 + ai2Ai2 +
... + ainAin. (This is called the expansion of the determinant of A along the
i− th row of A).

Theorem 2.1.5. Let A be an n × n matrix. Then |A| = a1jA1j + a2jA2j +
...+ anjAnj. (This is called the expansion of the determinant of A along the
j − th column of A).

Mathematical induction
If S(n) is a mathematical statement then this statement is true for every

n iff

1. S(1) is true

2. Assume S(k) is true

3. Prove S(k + 1) is true

Theorem 2.1.6. Let A be an n× n matrix. Then |A| = |At|.

Proof. 1. If n = 1, then At = A. So |A| = |At|
2. Assume the result is true for n = k. ( That is, if A is of size k × k,

then |A| = |At|)
3. Let A be of size (k + 1) × (k + 1) and expand |A| on the first row.

So |A| = a11A11 + ... + a1nA1n = a11A
t
11 + ... + a1,k+1A

t
1,k+1 = at11A

t
11 + ... +

atk+1,1A
t
k+1,1 = |At|

Theorem 2.1.7. Let A be an n× n matrix.

1. If A has a zero row or a zero column, then |A| = 0

2. If A has two identical rows or two identical columns, then |A| = 0

Proof. 1. If A has a zero row, say i− th row, then compute |A| using that
row, so |A| = ai1Ai1 + ...+ ainAin = 0 + 0 + ...+ 0 = 0

2. We use mathematical induction on the size of the matrix A 1. If n = 2,

say A =

(
a b
a b

)
. Then |A| = ab− ab = 0

2. Assume the result is true for n = k ( that is if A is of size k×k with
two identical rows then |A| = 0
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3. Let A be of size (k + 1) × (k + 1) with two identical rows then
expand |A| on any row distinct from the identical rows, say row j. So
|A| = aj1Aj1 + ...+ aj,k+1Aj,k+1, but now each Aj,l is a determinant of
matrix of size k with identical rows i, j, so Aj,l = 0, i = 1, ..., k + 1

Theorem 2.1.8. If A is a triangular matrix, then |A| = a11a22...ann. (That
is the determinant is the product of the entries in the main diagonal)

Proof. We use mathematical induction on the size of the matrix A 1. If

n = 2, say A =

(
a11 a12
0 a22

)
. Then |A| = a11a22

2. Assume the result is true for n = k.
3. Let A be of size (k+ 1)× (k+ 1) upper triangular then expand |A| on

the first column. So |A| = a11A11, but now each A11 is a determinant of an
upper triangular matrix of size k. So |A| = a11a22...ann
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2.2 Properties of the determinant

Theorem 2.2.1. Let A be an n× n matrix. Then

ai1Aj1 + ai2Aj2 + ...+ ainAjn =

{
0, i 6= j
|A| i = j

}
.

Proof. If i = j, then ai1Aj1 + ai2Aj2 + ... + ainAjn = ai1Ai1 + ai2Ai2 +
... + ainAin = |A|. If i 6= j, let A∗ be the matrix obtained from A by
replacing the j−th row of A by its i−th row. Expand the determinant of
A∗ using the j−th row. Since A∗ has two identical rows, so |A∗| = 0. So,
0 = |A∗| = a∗j1A∗j1 +a∗j2A

∗
j2 + ...+a∗jnA

∗
jn = ai1Aj1 +ai2Aj2 + ...+ainAjn

2.2.1 Row operations

Theorem 2.2.2. Let A be a quare matrix and B is obtained form A by only
one row operation. Then

1. Type I:Type I (B is obtained by interchanging two rows of A. Then
|B| = −|A|

2. Type II: B is obtained form A by multiplying one row only of A by a
nonzero constant, say, α. Then |B| = α|A|

3. Type III: B is obtained by adding a multiple of one row of A to another
row of A. Then |B| = |A|

Proof. By MI on the size of the matrix (Exercise)
The above theorem is equivalent to the next theorem.

Theorem 2.2.3. Let A be a square matrix and B = EA, E is an elementary
matrix. Then

1. Type I: If E is an elementary matrix of type I (E is obtained by in-
terchanging two rows of In. Then |B| = −|A|

2. Type II: If E is an elementary matrix of type II (E is obtained by
multiplying one row only of In by a nonzero constant, say, α. Then
|B| = α|A|

3. Type III: If E is an elementary matrix of type III (E is obtained by
adding a multiple of one row to another row of In. Then |B| = |A|
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A special case of the above theorem, we get the next two theorems

Theorem 2.2.4. Let E be an elementary matrix. Then

1. Type I:If E is an elementary matrix of type I (E is obtained by inter-
changing two rows of In. Then |E| = −1

2. Type II: If E is an elementary matrix of type II (E is obtained by
multiplying one row only of In by a nonzero constant, say, α. Then
|E| = α

3. Type III: If E is an elementary matrix of type III (E is obtained by
adding a multiple of one row to another row of In. Then |E| = 1

Theorem 2.2.5. Let E be an elementary matrix, and A be a matrix of the
same size of E. Then |EA| = |E||A|

Theorem 2.2.6. Let E1, ..., Ek be elementary matrices. Then |E1...Ek| =
|E1|...|Ek|

Proof. |E1...Ek| = |E1|...|Ek| = |E1||E2...Ek| = |E1||E2||E3...Ek| = |E1|...|Ek|.
OR we can use MI.

Theorem 2.2.7. A square matrix A is nonsingular iff |A| 6= 0

Proof. Let A be nonsingular. So A is row equivalent to In. Thus there
exist elementary matrices E1, ..., Ek such that A = E1, ..., EkIn. So |A| =
|E1||E2|...|Ek| 6= 0
Conversely, if |A| 6= 0. Then we use row operations to change A into RREF.
So there exist elementary matrices E1, ..., Ek and a matrix U in RREF such
that A = E1, ..., EkU . Since |A| 6= 0. So |U | 6= 0, since all E ′is are invertible,
and |A| = |E1|...|Ek||U |. So U = In, and so A is invertible.

Theorem 2.2.8. If A,B are n× n matrices, then |AB| = |A||B|

Proof. If A is singular then |A| = 0, and so AB is singular, and so |AB| =
|A||B| = 0.
So let A be nonsingular and so A is row equivalent to In. Thus |AB| =
|E1E2...EkB| = |E1||E2|...|Ek||B| = |E1E2...Ek||B| = |A||B|.
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2.3 Adjoint and Cramer’s rule

Definition 2.3.1. Let A be n × n matrix. The adjoint of A denoted by
adj(A) is an n × n whose ij−th entry is Aji that is adj(A) = Ct, where

C =


A11 A12 ... A1n

A21 A22 A2n

An1 An2 Ann


Example 2.3.1. Find adj(A) of A =

(
2 −1
3 4

)
Solution A11 = 4, A12 = −3, A21 = 1, A22 = 2, so adj(A) =

(
4 1
−3 2

)
Theorem 2.3.2. Let A be n× n matrix. Then adjoint of Aadj(A) = |A|In

Proof. The ij−th entry ofAadj(A) = ai1Aj1+...+ainAjn =

{
|A|, i = j
0, i 6= j

}
=

|A|In

Theorem 2.3.3. Let A be n× n nonsingular matrix. Then A−1 = adj(A)
|A|

Proof. Since A is nonsingular, so A−1 exists. Multiply Aadj(A) = |A|In from

left by A−1, so adj(A) = |A|A−1. Since |A| 6= 0, so A−1 = adj(A)
|A|

The above theorem gives another way to find the inverse if it exists, called
the cofactor method, or the adjoint method.

Cramer’s Rule

Theorem 2.3.4. Let A be n× n nonsingular matrix. Then the solutions of
Ax = b are given by adjoint of xi = |Aib|

|A| , where Aib is a matrix obtained from
A by replacing the i−th column of A by the column b

Proof. Since A is nonsingular, so A−1 exists. Multiply Ax = b from right

by A−1, so x = A−1b = adj(A)
|A| b. So x = 1

|A|


A11 A21 ... An1
A12 A22 ... An2
... ... ... ...
A1i A2i ... Ani
... ... ... ...
A1n A2n ... Ann

 b. So

xi = 1
A

(b1A1i + b2Ai2 + ...+ bnAni = |Aib|
|A|
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Remark 2.3.5. Cramer’s rule is not practical since it can be used only if the
system has a unique solution, also the number of operation are very large
since it involves computing the determinants.

Example 2.3.2. Use Cramer’s rule to solve the linear systems

1. Ax = b, where

A =

(
2 −1
3 4

)
, b =

(
2
3

)
2. Ax = b, where

A =

(
2 1
6 3

)
, b =

(
2
3

)

Solution (1) |A| = 11, so A is nonsingular, so A1b =

(
2 −1
3 4

)
, A2b =(

2 2
3 3

)
So |A1b| = 11, |A2b| = 0. Thus x1 = |A1b|

|A| = 1, x2 = |A2b|
|A| = 0

(2)|A| = 0, so A is singular, so we can’t use Cramer’s rule
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Exercises.

1. Answer the following by true false

(a) If A,B are n × n matrices. Then A,B are nonsingular iff AB is
nonsingular

(b) If E is an elementary matrix. Then E−1 = E

(c) If E is an elementary matrix. Then |E−1| = |E|
(d) Let A,B be n× n equivalent matrices. Then |A| = |B|.
(e) Let A be n× n. Then |αA| = α|A|.
(f) Let A be n× n. Then |adj(A)| = |A|.

2. Use Cramer’s method to solve the linear system Ax = b whose aug-

mented matrix

 1 2 3 | 1
−1 1 3 | 0
1 1 0 | −1



3. Let A =

 1 2 3
−1 1 3
1 1 0

. Find the inverse of A using the adjoint.

4. If A is a square n× n matrix. Show that A is nonsingular iff adj(A) is
nonsingular.

5. If A is a square n× n matrix. Show that |adj(A)| = |A|n−1.

6. If A is a square n× n matrix. Show that adj(adj(A)) = |A|n−2A.

7. Let adj(A) =

 1 2 3
−1 1 3
1 1 0

. Find A.

Sample First Exam

Q1 :(20 points) Answer the following statements by true or false

(a) If A,B are square n× n nonzero matrices such that AB = 0, then
A and B are singular.
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(b) If A = LU is the LU-factorizaton and A is singular then U is
singular.

(c) If A,B,AB are n× n symmetric matrices then AB = BA.

(d) If A is symmetric and skew symmetric then A must be a zero
matrix.( A is skew symmetric if AT = −A).

(e) If A is an n×n nonsingular matrix then det(adj(A)) = (det(A))n−1.

(f) If the system Ax = b is consistent then b is a linear combinations
of the columns of A.

(g) If A,B are square n× n matrices and AB is singular then A and
B are singular.

(h) If A is row equivalent to B then det(A) = det(B).

(i) If the coefficient matrix of the system AX = b is singular then the
system has infinitely many solutions.

(j) In the linear system Ax = b, if b is a linear combinations of the
columns of A then the system has a unique solution.

(k) If the row echelon form of the matrix A involves a free variable,
then the linear system AX=b has infinitely many solutions.

(l) a square matrix A is nonsingular iff its row echelon form is the
identity matrix.

(m) If AB = AC, A 6= 0, then A = B.

(n) In the linear system Ax = b, if b is the first column of A, then the
system has infinitely many solutions.

(o) If det(A) = det(B), then A = B

Q2 (20points) Let A =

 1 2 3 | 2
−1 1 3 | 4
1 2 α | β

 be the Augmented matrix

of a linear system. Find the values of α, β so that the system

(i) is consistent

(ii) inconsistent
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Q3 (20points) Let A =

 1 2 3
−1 1 3
1 1 0

 be the coefficient matrix of a linear

system AX = b. Find

(i) LU-factorization of A

(ii) Use LU-factorization to solve the system AX = b, where b = (1, 1, 1)t

Q4 (20points) Let A be an n× n nonsingular matrix

(i) Show that adj(adj(A)) = |A|n−2A.

(ii) Let A,B be n× n square symmetric matrices. Show that AB = BA iff
AB is symmetric
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Vector Spaces

3.1 Definition and Examples

Definition 3.1.1. A none empty set V with two operations + : V ×V → V ,
· : R× V → V is called a vector space iff the following holds

1. a+ b ∈ V , ∀a, b ∈ V

2. αa ∈ V , ∀α ∈ R, ∀a ∈ V

3. 0 ∈ V such that 0 + a = a+ 0 = a, ∀a ∈ V

4. ∀a ∈ V , −a ∈ V , and a+−a = −a+ a = 0

5. ∀a, b, c ∈ V , a+ (b+ c) = (a+ b) + c

6. ∀a, b ∈ V , a+ b = b+ a

7. (αβ)a = α(βa),∀α, β ∈ R, ∀a ∈ V

8. α(a+ b) = αa+ αb, ∀α ∈ R, ∀a, b ∈ V

9. (α + β)a = αa+ βa, ∀α, β ∈ R, ∀a ∈ V

10. 1 · a = a, ∀a ∈ V

Example 3.1.1. 1. R with usual addition and multiplication is a vector
space

33
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2. Mn×m ≡ Rn×m is the set of all m × n matrices under addition and
scalar multiplication of matrices is a vector space

3. The set of all real valued functions under addition and scalar multipli-
cation of functions: (f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) is a
vector space

The zero polynomial denoted by Z(x) or 0(x) is of degree zero

4. C[a, b] = {f : [a, b]→ R : f is continuous on [a, b]} under addition and
scalar multiplication of functions: (f + g)(x) = f(x) + g(x), (αf)(x) =
αf(x) is a vector space

5. Cn[a, b] = {f : [a, b] → R : f (n) is continuous on [a, b]} under ad-
dition and scalar multiplication of functions: (f + g)(x) = f(x) +
g(x), (αf)(x) = αf(x) is a vector space

6. Pn = {f(x) = an−1x
n−1+...a1x+a0, a

′
is ∈ R} under addition and scalar

multiplication of functions: (f + g)(x) = f(x) + g(x), (αf)(x) = αf(x)
is a vector space

7. V = {f(x) : deg(f) = 3} under addition and scalar multiplication of
functions: (f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) is not a vector
space

8. Q,Z are not vector spaces.

9. {(0, a) : a ∈ R} under addition and scalar multiplication of matrices is
a vector space

10. {(1, a) : a ∈ R} under addition and scalar multiplication of matrices is
not a vector space

Theorem 3.1.2. Let V be a vector space. Then

1. 0v = 0,∀v ∈ V

2. If x+ y = 0, then y = −x

3. −1 · v = −v

Proof. 1. If 0 = 0 + 0, so (0 + 0)v = 0v. Thus 0v + 0v = 0v, add to both
sides −0v. So, 0v+ 0v+−0v = 0v = +− 0v. Thus 0v+ 0 = 0. Hence,
0v = 0
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2. Add −x to both sides of x + y = 0. So, −x + x + y = −x + 0. Thus
y = −x.

3. 0 = 1 + −1, so (1 + −1)v = 0v = 0 by 1. Thus 1v + −1v = 0, so
v +−1v = 0. Add to both sides −v. So, −v + v +−1v == −v. Thus
−1v = −v.
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3.2 Subspaces and spanning sets

Definition 3.2.1. A none empty subset S of a vector space V is called a
subspace of V iff the following holds

1. x+ y ∈ S,∀x, y ∈ S

2. α · x ∈ S,∀x ∈ S,∀α ∈ R

Theorem 3.2.2. Let S be a subspace of a vector space V . Then 0 ∈ S

Proof. Since S is a subspace of V , so S 6= φ. Let x ∈ S. So 0x = 0 ∈ S

Remark 3.2.3. Let S be a subset of a vector space V . If 0 /∈ S, then S is not
a subspace of V

Example 3.2.1. 1. S = {An×n : |A| = 0}, V = {An×n}, is not subspace,
since the sum of two singular need not be singular

2. S = {An×n : |A| 6= 0}, V = {An×n}, is not subspace, since the sum of
two nonsingular need not be nonsingular. Also the zero matrix is not
nonsingular

3. S = {Am×n : a11 = 0, V = {Am×n} is a subspace

4. S = {An×n : At = A}, V = {An×n} is a subspace

5. S = {An×n : A, is triangular } is not a subspace

6. S = C3[a, b], V = C[a, b]} is a subspace

7. S = Pn, V = C(R)} is a subspace, where, C(R) is the set of all
continuous functions on R.

8. S = {(a, b)t : a + b = 1, a, b ∈ R}, V = {(a, b)t : a, b ∈ R} is not a
subspace

9. {(1, a)t : a ∈ R}, V = {(a, b)t : a, b ∈ R} is not a subspace

10. {(0, a)t : a ∈ R}, V = {(a, b)t : a, b ∈ R} is a subspace

Proof. HW
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The Null Space of a Matrix

Definition 3.2.4. Let A be m × n matrix. The null space of A denoted by
N(A) = {x ∈ Rn : Ax = 0}

Theorem 3.2.5. Let A be m× n matrix. Then N(A) is a subspace of Rn

Proof. 1. N(A) 6= φ since 0 ∈ N(A)

2. Let x, y ∈ N(A). Then Ax = 0, Ay = 0, so A(x + y) = Ax + Ay =
0 + 0 = 0. So x+ y ∈ N(A)

3. Let x ∈ N(A), α ∈ R. Then Ax = 0, so A(αx) = αAx = α(0) = 0, so
αx ∈ N(A) So N(A) is a subspace of Rn

Linear Combinations.

Definition 3.2.6. Let V be a vector space and let v1, v2, ..., vk ∈ V, c1, c2, ..., ck ∈
R. Then a vector c1v1 + c2v2 + ... + ckvk is called a linear combination of
the vectors v1, v2, ..., vk. The set of all linear combinations of v1, v2, ..., vk is
called the span of v1, v2, ..., vk which is denoted by Span(v1, v2, ..., vk)

Example 3.2.2. 1. v =

 1
2
3

 is a linear combination of a =

 1
2
3

,

and b =

 0
0
0

, since v = 1a+ 0b

2. Is v =

(
1
2

)
a linear combination of a =

(
1
0

)
, and b =

(
1
1

)
Solution. Let v = c1a + c2b, if the system has a solution then v is a
linear combination of a, b

So let

(
1
2

)
= c1

(
1
0

)
+c2

(
1
1

)
We get the linear system whose augmented matrix

(
1 1 | 1
0 1 | 2

)
and

this system has a unique solution c2 = 2, c1 = −1, so v is a linear
combination of a and b.
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Theorem 3.2.7. Let V be a vector space and let v1, v2, ..., vk ∈ V . Then
Span(v1, v2, ..., vk) is a subspace of V

Proof. 1. Span(v1, v2, ..., vk) 6= φ, since 0 = 0v1 + 0v2 + ... + 0vk ∈
Span(v1, v2, ..., vk)

2. Let x, y ∈ Span(v1, v2, ..., vk). Then x = α1v1 + α2v2 + ... + αkvk,
y = c1v1 + c2v2 + ...+ ckvk. So x+ y = (α1 + c1)v1 + (α2 + c2)v2 + ...+
(αk + ck)vk ∈ Span(v1, v2, ..., vk)

3. x = α1v1 + α2v2 + ...+ αkvk, α ∈ R. Then αx = αα1v1 + αα2v2 + ...+
ααkvk ∈ Span(v1, v2, ..., vk) So Span(v1, v2, ..., vk) is a subspace of V

Theorem 3.2.8. Let V be a vector space and let S, T be subspaces of V .
Then

1. S
⋂
T is a subspace of V

2. S
⋃
T is not always a subspace of V

3. S + T = {x+ y : x ∈ S, y ∈ T} is a subspace of V

Proof. HW

Definition 3.2.9. Let V be a vector space. A set of v1, v2, ..., vk ∈ V is
called a spanning set of V iff every vector v ∈ V is linear combination of
v1, v2, ..., vk. That is V = Span(v1, v2, ..., vk)

Notation
Let V = Rn, and let ei be an n × 1 column matrix with 1 in the ith

component and zero otherwise, that is ei is the i− th column of In.

Example 3.2.3. 1. e1, e2, ..., en span Rn, this is called the standard span-
ning set for Rn. Since if x = (x1, x2, ..., xn)t ∈ Rn, then x = x1e1 +
...+ xnen

2. 1, x, ..., xn−1 span Pn, this is called the standard spanning set for Pn.
Since if f(x) = a0 + a1x + a2x

2 + ... + an−1x
n−1 ∈ Pn, then f(x) =

a0(1) + (a1)x+ (a2)x
2 + ...+ (an−1)x

n−1
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Example 3.2.4. 1. Does v1 =

 1
2
3

 , v2 =

 1
2
2

 , v3 =

 0
0
1

 span

R3

2. Is v1 =

(
1
2

)
, v2 =

(
1
0

)
, v3 =

(
1
1

)
a spanning set for R2

3. Is v1 = x, v2 = 1, v3 = 2x− 1 a spanning set for P2

Solution.

1. Let v =

 a
b
c

, and let v = c1v1 + c2v2 + c3v3. This system is not

always consistent, why

2. Let v =

(
a
b

)
, and let v = c1v1 + c2v2 + c3v3. This system is always

consistent, why

3. Let v = ax + b ∈ P2, and let v = c1v1 + c2v2 + c3v3. This system is
always consistent, why

Linear System Revisited

Theorem 3.2.10. Let A be an m × n matrix, and let the linear system
Ax = b be consistent with x0 a solution. Then y is a solution of Ax = b iff
y = x0 + z, where z ∈ N(A)

Proof. A(x0 + z) = Ax0 +Az = b+ 0 = b, so x0 + z is a solution of Ax = b.
Also, if y is another solution of Ax = b, then y − x0 is a solution of Ax = 0,
since A(y − x0) = Ay − Ax0 = b − b = 0. So y − x0 ∈ N(A). That is there
exists z ∈ N(A) such that y − x0 = z. So y = x0 + z
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3.3 Linear Independence

Definition 3.3.1. Let V be a vector space. A set of v1, v2, ..., vk ∈ V is called
linearly independent (li) iff the only solution of α1v1 + α2v2 + ...+ αkvk = 0
is the zero solution α1 = α2 = ... = αk = 0. Otherwise, they are linearly
dependent (ld).

Example 3.3.1. 1. Is v1 =

 1
2
3

 , v2 =

 1
2
2

 , v3 =

 0
0
1

 li

2. Is v1 =

(
1
2

)
, v2 =

(
1
0

)
li

3. Is v1 =

(
1
2

)
, v2 =

(
1
0

)
, v3 =

(
1
1

)
li

4. Is v1 = x, v2 = 1, v3 = 2x− 1 li

Solution.

1. Let c1v1 + c2v2 + c3v3 = 0. So we solve the homogeneous system

v1 =

 1 1 0 | 0
2 2 0 | 0
3 2 1 | 0

, and the coefficient matrix is singular so it

has infinite solutions. So the vectors are ld

2. Let c1v1 + c2v2 = 0. This system has aunique solution. So the vectors
are li

3. Let c1v1 + c2v2 + c3v3 = 0. This system is underdetermined so it has
infinite solutions. So the vectors are ld

4. Let v = c1v1 + c2v2 + c3v3. This system is underdetermined so it has
infite solutions. So the vectors are ld

Remark 3.3.2. Any set of vectors that contain the zero vectro are ld. Why?

Theorem 3.3.3. A set of vectors v1, v2, ..., vk in a vector space V are ld iff
one of them is a linear combination of the remaining set of vectors.
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Proof. ⇒. Say v1 is a linear combination of v2, ..., vk. So there exist constants
c2, ..., ck ∈ R such that v1 = c2v2+...+ckvk, and so (−1, c2, ..., ck) is a nonzero
solution of α1v1 + ...+ αkvk = 0. So v1, v2, ..., vk are ld.
⇐. Let v1, v2, ..., vk be linearly dependent, so α1v1 + ...+ αkvk = 0 has a

nonzero solution,say, (c1, c2, ..., ck), and at least one of the c′is is nonzero,say,
c1. So v1 = −c2

c1
v2+...+−ck

c1
vk, and so v1 is a linear combination of v2, ..., vk

Theorem 3.3.4. A set of vectors v1, v2, ..., vk in a vector space V are li iff ev-
ery vector v ∈ Span(v1, v2, ..., vk) is uniquely written as a linear combination
of v1, v2, ..., vk.

Proof. ⇒. Suppose v ∈ Span(v1, v2, ..., vk) are not uniquely written as a
linear combination of v2, ..., vk,say, v = α1v1 + ...+ αkvk = β1v1 + ...+ βkvk.
So (α1 − β1)v1 + ...+ (αk − βk)vk = 0. So (α1 − β1, ..., αk − βk) is a nonzero
solution of c1v1 + ...+ ckvk = 0. So v1, v2, ..., vk are ld.
⇐. Let α1v1 + ... + αkvk = 0. Since, 0v1 + ... + 0vk = 0, and 0 ∈

Span(v1, v2, ..., vk), so α1 = 0, .., αk = 0. Thus, v1, ..., vk are li.

Theorem 3.3.5. A set of vectors v1, v2, ..., vn in a vector space Rn are li iff
the matrix A = (v1, v2, ..., vn) is nonsingular.

Proof. v1, v2, ..., vn are li iff α1v1 + ... + αnvn = 0 has only the zero solution
iff A is nonsingular.

Theorem 3.3.6. Let a set of vectors f1, f2, ..., fn in Cn−1[a, b] be ld, then

A =


f1 ... fn
f ′1 ... f ′n
... ...
... ...
fn−11 ... fn−1n

 is singular.

Proof. Suppose f1, f2, ..., fn in Cn−1[a, b] be ld, then there exist constants
c1v1 + ...+ ckvn not all zeros such that c1f1 + ...+ cnfn = 0. Take all (n− 1)
derivatives of the previous equation, we get c1v1 + ... + ckvn is a nonzero

solution of


f1 ... fn
f ′1 ... f ′n
... ...
... ...
fn−11 ... fn−1n

X = 0. So A =


f1 ... fn
f ′1 ... f ′n
... ...
... ...
fn−11 ... fn−1n

 is

singular.
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Definition 3.3.7. Let f1, f2, ..., fn in Cn−1[a, b]. The Wronskian of f1, f2, ..., fn
denoted by W (f1, f2, ..., fn) is defined by W (f1, f2, ..., fn) = |A|, where A =

f1 ... fn
f ′1 ... f ′n
... ...
... ...
fn−11 ... fn−1n

.

Theorem 3.3.8. Let f1, f2, ..., fn in Cn−1[a, b]. If W (f1, f2, ..., fn) 6= 0 for
some x ∈ [a, b]. Then f1, f2, ..., fn are li

Proof. Follows from the above theorem by contrapositive.

Remark 3.3.9. Let f1, f2, ..., fn in Cn−1[a, b]. If W (f1, f2, ..., fn) = 0. Then
test fails

Example 3.3.2. 1. x2, 2x2 are ld, but W (x2, 2x2) = 0

2. x2, x|x| over C1[−1, 1] are li, but W (x2, x|x|) = 0

3. Is x, x2, x− 1, sin2x, cos2x, ex li?
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3.4 Basis and Dimension

Definition 3.4.1. A set of vectors v1, v2, ..., vn in a vector space V is a basis
for V iff:

1. v1, v2, ..., vn span V

2. v1, v2, ..., vn are li

Example 3.4.1. 1. e1, e2, ..., en is a basis for Rn called the standard basis

2. 1, x, ..., xn−1 is a basis for Pn called the standard basis

3. Is Eij such that eij = 1 and 0, otherwise is a standard basis for Rm×n

4. v1 =

 1
2
3

 , v2 =

 1
1
0

 , v3 =

 1
0
0

 is a basis for R3

5. 1 + x, x+ 3 is a basis for P2

Theorem 3.4.2. Let a set of vectors v1, v2, ..., vn be a spanning set for V . If
w1, w2, ..., wm ∈ V,m > n. Then w1, w2, ..., wm are ld

Proof. Let α1w1 + ...+ αmwk = 0. Since v1, v2, ..., vn span V , so for each wi,
there exist cij, j = 1, ..., n ∈ R such that wi = ci1v1 + ci2v2 + ...+ cinvn. Now
substitute wi = ci1v1 + ci2v2 + ... + cinvn in α1w1 + ... + αmwk = 0, we get
an n×m homogeneous system with m > n. So the system has a nonzero
solution. So, w1, w2, ..., wm are ld.

Theorem 3.4.3. Let V be a vector space with two basis v1, v2, ..., vn, and
w1, w2, ..., wm. Then m = n.

Proof. Since v1, v2, ..., vn span V , and w1, w2, ..., wm are li, so by previous
theorem m ≤ n . Similarly, since w1, w2, ..., wm span V , and v1, v2, ..., vn are
li, so by previous theorem n ≤ m. So m = n.

Definition 3.4.4. Let V be a nonzero vector space. If V has a finite basis
v1, v2, ..., vn, then V is called finite dimensional vector space with dimension
n, written dim(V ) = n. The zero vector space {0} has dimension zero with
basis φ. Otherwise, V is called infinite dimensional, written dim(V ) =∞.

Example 3.4.2. 1. Rn has dimension n
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2. Pn has dimension n

3. Rm×n has dimension n.m

4. Cn[a, b] has dimension ∞

Theorem 3.4.5. Let V be a vector space with dimension n. Then the fol-
lowing are equivalent(FAE)

1. v1, v2, ..., vn is a basis

2. v1, v2, ..., vn span

3. v1, v2, ..., vn are li.

Proof. 1⇒ 2. Clearly, if v1, v2, ..., vn is a basis for V , then v1, v2, ..., vn span
V .

2 ⇒ 3. So let v1, v2, ..., vn span V but ld. So one of them is a linear
combination of the others, say, so v1 ∈ Span(v2, ..., vn). If v2, ..., vn are li,
then v2, ..., vn is a basis for V with n−1 vectors, a contradiction. So v2, ..., vn
are ld, and so one of this set is a linear combination of the remaining set,
say, v2 ∈ Span(v3, ..., vn). Similarly, if v3, ..., vn are li, then v3, ..., vn is a basis
for V with n− 2 vectors, a contradiction. We continue the same process and
at some stage, we must get a set which is li and span V that is it is a basis
with fewer than n vectors, a contradiction. So, v1, v2, ..., vn are li. 2 ⇒ 3
Let v1, v2, ..., vn be li, but does not span V , so there exists a nonzero vector
u ∈ V and u /∈ span(v1, v2, ..., vn). So, u, v1, v2, ..., vn are ld, and so there exist
ci, j = 1, ..., n+1 ∈ R not all zeros such that c1v1+c2v2+...+cnvn+cn+1u = 0.
But cn+1 6= 0 for if cn+1 = 0, then v1, v2, ..., vn are ld, a contradiction. But,
cn+1 6= 0 implies u is a linear combination of v1, v2, ..., vn, a contradiction.
So, v1, v2, ..., vn span V .

Remark 3.4.6. Let V be a vector space with dimension n > 0. Then

1. A set of v1, v2, ..., vm,m > n is ld.

2. A set of v1, v2, ..., vm,m < n can not span V .

3. A li set of v1, v2, ..., vm,m < n can be extended to a basis for V .

4. A spanning set of v1, v2, ..., vm,m > n can be reduced(pared down) to
a basis for V .
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Remark 3.4.7. 1. [e1, e2, ..., en] is called the standard basis for Rn.

2. [1, x, ..., xn−1] is called the standard basis for Pn.
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3.5 Change of Basis

Definition 3.5.1. Let V be a vector space with an ordered basis B = [v1, v2, ..., vn],
and v ∈ V . Then there exist c1..., cn ∈ R such that v = c1v1 + ...+ cnvn. The
vector (c1, ..., cn)t ∈ Rn is called the coordinate vector of v with respect to the
basis B denoted by [v]B

Now, let V be a vector space with two basis B = [v1, v2, ..., vn], and
S = [w1, w2, ..., wn], and v ∈ V . Is there a relation between [v]B, and [v]S.
We start with a simple example.

Example 3.5.1. Let V = R2 with basis [u1, , u2], say, u1 = (u11, u12)
t, u2 =

(u21, u22)
t and let v = (x1, x2)

t ∈ R2, then there exist c1, c2 ∈ R such that

v = (x1, x2)
t = c1u1 + c2u2. So,

(
u1 u2

)( c1
c2

)
=

(
x1
x2

)
. That is(

u11 u21
u12 u22

)(
c1
c2

)
=

(
x1
x2

)
. Let U = [u1, u2], then U is called the

transition matrix from the basis B into the standard basis [e1, e2], and U−1 is
the transition matrix from the standard basis [e1, e2] into the basis U = [u1, u2]

In general, if B = [u1, u2], S = [w1, w2] are any two none standard basis
of R2, let U1 = (u1, u2) be the transition matrix from B = [u1, u2] into
the standard basis [e1, e2], and U2 = (w1, w2) be the transition matrix from
S = [w1, w2] into the standard basis [e1, e2]. Then the transition matrix from
B into S is U = U−12 U1

Theorem 3.5.2. Let V be a finite dimensional vector space with dimension
n. If B = [v1, v2, ..., vn], S = [w1, w2, ..., wn]. Then the transition matrix
from the basis B into the basis S is the n× n nonsingular matrix

U = ([v1]S, [v2]S, ..., [vn)S].

Remark 3.5.3. Let V be a finite dimensional vector space with basis B, and
let v1, .., vk ∈ V . Then

1. [v1 + v2 + ...+ vk]B = [v1]B + [v2]B + ...+ [vk]B

2. v1, .., vk are li iff [v1]B, [v2]B, ..., [vk]B are li.
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3.6 Row space, Column space, Rank, and Nul-

lity

Definition 3.6.1. Let A be m× n matrix. Then

1. The row space of A is the subspace of Rn spanned by the rows of A
denoted by R(A), that is R(A) = span[−→a1 ,−→a2 , ...,−→am)

2. The column space of A is the subspace of Rm spanned by the columns
of A denoted by C(A), that is C(A) = span[a1, a2, ..., am)

3. The null space of A is the subspace of Rn which is the solution of the
homogeneous system Ax = 0 denoted by N(A).

4. The nullity of A denoted by Null(A) = dim(N(A).

5. The rank of A denoted by rank(A) = dim(C(A).

Theorem 3.6.2. Let A,B be m×n equivalent matrices. Then R(A) = R(B).
Consequently, if U is the REF of A, then R(A) = R(U)

Proof. If A,B are row equivalent, then the rows of A are linear combinations
of the rows of B, so R(A) ⊂ R(B). Similarly, the rows of B are linear
combinations of the rows of A, so R(B) ⊂ R(A). So, R(A) = R(B).

Theorem 3.6.3. Let A be m× n matrix. Then dim(R(A)) = dim(C(A)).

Theorem 3.6.4. Let A be m× n matrix. Then Rank(A) +Null(A) = n.

Proof. Let U be the REF of A. Then dim(R(A)) = dim(R(U)) is the number
of leading variables, and the dim(N(A)) = dim(N(U)) is the number of free
variables. So, Rank(A) +Null(A) = n

Theorem 3.6.5. Let A be m × n matrix. If U is the REF of A, then the
columns of A that correspond to the leading 1′s in U is a basis for C(A)

Example 3.6.1. Find R(A), C(A), N(A), null(A), rank(A) of A =


1 2 0 −1
1 2 0 1
2 4 0 0
1 2 1 −1
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Solution. REF of A is U =


1 2 0 −1
0 0 1 0
0 0 0 2
0 0 0 0

. So,

1. Basis for R(A) is (1, 2, 0,−1), (0, 0, 1, 0), (0, 0, 0, 2)

2. Basis for C(A) is (1, 1, 2, 1)t, (0, 0, 0, 1)t, (−1, 1, 0,−1)t

3. Rank(A) = 3

4. Null(A) = 1

5. N(A) = (−2α, α, 0, 0)t, α ∈ R with basis (−2, 1, 0, 0)t

Back to the linear system Ax = b
Recall that the consistency theorem of the linear system Ax = b says

that the linear system Ax = b is consistent iff b is a linear combination of
the columns of A iff b ∈ C(A). Consequently we get the following theorem

Theorem 3.6.6. Let A be m× n matrix, b ∈ Rm. Then

1. The linear system ax = b is consistent for every b ∈ Rm iff C(A) = Rm.

2. The columns of A are li, iff the linear system Ax = b is either incon-
sistent or has a unique solution.

Theorem 3.6.7. Let A be n × n matrix. Then A is nonsingular iff the
columns of A form a basis for Rn.
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Sample Exam Q1: (45 points)

(1) Let V be a vector space. Mark each of the following statements by true
or false.

(a) For any v ∈ V, −v ∈ V . T

(b) For any v, w ∈ V, v · w ∈ V . F

(c) For any v ∈ V, 2v ∈ V . T

(d) For any v ∈ V, 0v ∈ R. F

(e) V could be equal φ. F

(2) Let V be a vector space, v1, v2, v3, v4 span V . Mark each of the following
statements by true or false.

(a) dim(V ) = 4. F

(b) dim(V ) ≥ 4. F

(c) dim(V ) ≤ 4. T

(d) any set of more than 5 vector in V are linearly dependent. T

(e) Any basis of V has exactly 4 vectors. F

(3) Let V be a vector space, dim(V ) = 5. Mark each of the following state-
ments by true or false.

(a) If v1, v2, v3, v4, v5 in V , then v1, v2, v3, v4, v5 is a basis for V . F

(b) If v1, v2 in V , then v1, v2 are linearly independent. F

(c) If v1, v2 in V , then v1, v2 can’t span V . T

(d) If v1, v2, v3, v4, v5 in V , and v ∈ V , then v ∈ Span(v1, v2, v3, v4, v5).
F

(e) If B is a basis for V , then vB ∈ R5. T

(4) Let A be 3 × 3 matrix such that |A| = 0. Mark each of the following
statements by true or false.

(a) Rank(A) = 3. F

(b) Rank(A) < 3. T
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(c) Null(A) = 1. F

(d) N(A) = {0}. F

(e) Null(A) = 0. F

(5) Let A,B be n×n nonzero matrices such that AB = 0. Mark each of the
following statements by true or false.

(a) Ax = 0 has a nonzero solution. T

(b) Ran(A) = Rank(B). F

(c) Ran(B) ≤ Null(A). T

(d) Ran(A) ≤ Null(B)

(e) Ax = 0 has only the zero solution. F

(6) Let A,B be subspaces of a vector space V . Mark each of the following
statements by true or false.

(a) A
⋂
B is a subspace of V . T

(b) A
⋃
B is a subspace of V . F

(c) A+B = {x+ y;x ∈ A, y ∈ B} is a subspace of V . T

(d) 2A = {2x : x ∈ A} is a subspace of V . T

(e) A
⋂
B 6= φ. T

Q2: (10 points) Let A,B be subspaces of a vector space V .

(a) Show that A
⋂
B is a subspace of V

See notes

(b) Let A be m× n matrix. Show that N(A) is a subspace of Rn.

See notes

Q3: (10 points)

Let V = P3 and let S = {f ∈ V : f(0) = 0, f(1) = 0}.

(a) Show S is a subspace of V

Do it

(b) Find a basis for S x2 − x
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Q4: (20 points)

Let A =

1 1 2 1 4
1 −1 2 −1 6
3 1 6 1 14

. Find

(a) A basis for row space of A

(b) A basis for column space of A

(c) A basis for null space of A

(d) Rank(A)

Q5: (25 points) Let T : R2 → R3 defined by T (x, y) = (x − z, y −
x, x− y)

(a) Show T is a linear transformation

(b) Find the matrix representation of T with respect to the standard
basis of R2, R3

(c) Find a basis for ImmT

(d) Find a basis for kerT

(e) Find all v ∈ R2 : T (v) = (1, 1, 1)

Q6: (10 points) Let V = P2, B = [1− x, 2 + x], F = [1 + 2x, 2− 3x]

(a) Find the transition matrix S from B into F

(b) Use the transition matrix S to find the vector v where v[B] = (2, 5)t



Chapter 4

Linear Transformations

4.1 Definitions, Examples, and Basic Prop-

erties

Definition 4.1.1. Let V,W be vector spaces. A mapping (a function)
L : V → W is called a linear transformation (LT) iff

(a) L(v1 + v2) = L(v1) + L(v2),∀v1, v2 ∈ V
(b) L(αv) = αL(v),∀v ∈ V, ∀α ∈ R

Example 4.1.1. (a) L : R2 → R2, L((x, y)t) = (x,−y)t is a linear
transformation (reflection on X-axis)

(b) L : R2 → R2, L((x, y)t) = (−x, y)t is a linear transformation (re-
flection on y-axis)

(c) L : R2 → R2, L((x, y)t) = (x2, y)t is not a linear transformation

(d) Let V be a vector space, and let v0 ∈ V , L : V → V, L(v) = v + v0
is a linear transformation iff v0 = 0

(e) L : R2 → R2, L((x, y)t) = (x, y + 1)t is not a linear transformation

Theorem 4.1.2. Let V,W be vector spaces, and let L : V → W be a
linear transformation. Then

(a) L(0V ) = 0W

52
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(b) L(v1 − v2) = L(v1)− L(v2),∀v1, v2 ∈ V
(c) L(α1v1+α2v2+...+αnvn) = α1L(v1)+α2L(v2)+...+αnL(vn),∀v1, v2, ..., vn ∈

V, ∀α1, α2, ..., αn ∈ R

Proof. (a) L(0V ) = L(00V ) = 0L(0V ) = 0W

(b) L(v1 − v2) = L(v1 +−1v2) = L(v1) + L(−1v2) = L(v1)− 1L(v2) =
L(v1)− L(v2), ∀v1, v2 ∈ V

(c) BY MI

Remark 4.1.3. Let V,W be vector spaces, and let L : V → W be a
mapping. If L(0V ) 6= 0W , then L is not a linear transformation

Theorem 4.1.4. Let V,W be vector spaces, and let L : V → W be a
mapping. Then L is a linear transformation iff L(αv1 +βv2) = αL(v1)+
βL(v2),∀v1, v2 ∈ V, ∀α, β ∈ R

Example 4.1.2. (a) L : C[0, 1] → R2, L(f(x)) =

( ∫ 1

0
f(x)dx
f(0)

)
is a

linear transformation

(b) L : P3 → P2, L(f(x)) = f ′(x) is a linear transformation

(c) Let A be m×n matrix, and let L : Rn → Rm, L(X) = AX, ∀X ∈ Rn

is a linear transformation

Remark 4.1.5. Let V,W be vector spaces, and let V be a finite dimen-
sional vector space with basis B = [v1, ..., vn], and let L : V → W
be a LT. Then L is completely determined by the basis B. That if
L(v1), ..., L(vn) are given then for any v ∈ V, v = c1v1 + ...+ cnvn, and so
L(v) = c1L(v1) + ...+ cnL(vn)

4.1.1 Kernel and images

Definition 4.1.6. Let L : V → W be a linear transformation. Then

(a) The kernel of L denoted by kerL = {v ∈ V : L(v) = 0W}
(b) The image (or the range)of L denoted by ImmL (or L(V ) or RL)

is defined by L(V ) = {w ∈ W : w = L(v) for some v ∈ V }
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Theorem 4.1.7. Let L : V → W be a linear transformation. Then

(a) kerL is a subspace of V

(b) L(V ) is a subspace of W

Proof. (a) 1. 0 ∈ kerL, since L(0) = 0

2. Let v1, v2 ∈ KerL. Then L(v1) = L(v2) = 0, so L(v1 + v2) =
L(v1) + L(v2) = 0 + 0 = 0. Hence, v1 + v2 ∈ KerL
3. Let v ∈ kerL, α ∈ R. Then L(αv) = αL(v) = α0 = 0, so
αv ∈ KerL. Thus KerL is a subspace of V

(b) 1. 0 ∈ ImmL, since L(0) = 0

2. Let w1, w2 ∈ ImmL. So there exist v1, v2 ∈ V such that w1 =
L(v1), w2 = L(v2), so w1 +w2 = L(v1) +L(v2) = L(v1 +v2) ∈ L(V ).

3. Let w ∈ ImmL,α ∈ R. So there exist v ∈ V such that w = L(v).
Then αw = αL(v) = L(αv) ∈ ImmL. Thus ImmL is a subspace
of W

Example 4.1.3. Find the kernel and image of the following linear trans-
formations

(a) L : P2 → R2, L(f(x)) =

( ∫ 1

0
f(x)dx
f(0)

)
(b) L : P3 → P2, L(f(x)) = f ′(x)

(c) L : R4 → R2, L((x1, x2, x3, x4)
t) = (x1 + x2 + x3, x4)

t

Solution:

(a) 1. KerL = {f(x) = ax + b : L(f(x)) =

( ∫ 1

0
f(x)dx
f(0)

)
=

(
0
0

)
.

So

(
a
2

+ b
b

)
=

(
0
0

)
. So a = b = 0. Thus KerL = Z(x) = 0(x)

2. ImmL = {(x, y)t ∈ R2 : (x, y)t = L(ax + b) =

(
a
2

+ b
b

)
=

a

(
1
2

0

)
+ b

(
1
1

)
. So, a basis for L(P2) is

(
1
2

0

)
,

(
1
1

)
which is

a basis for R2. So, ImmL = R2
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(b) L : P3 → P2, L(f(x)) = f ′(x)

1. KerL = {f(x) : L(ax2 + bx + c) = 2ax + b = 0}. So a = b = 0.
Thus KerL = f(x) = c

2. ImmL = {(g(x) ∈ P2 : g(x) = L(ax2 + bx + c) = 2ax + b. So, a
basis for L(P3) is 2x, 1 which is a basis for P2. So, ImmL = P2

(c) 1. KerL = {(x1, x2, x3, x4)t : L((x1, x2, x3, x4)
t) = (x1 + x2 +

x3, x4)
t = (0, 0)t}. So, x4 = 0, x1 = −x2 − x3. So KerL = (−x2 −

x3, x2, x3, 0)t, and so a basis for KerL is (−1, 1, 0, 0)t, (−1, 0, 1, 0)t

2. ImmL = (x, y)t = (x1 − x2 + x3, x4)
t = x1(1, 0)t + x2(−1, 0)t +

x3(1, 0)t + x4(0, 1)t with basis (1, 0)t, (0, 1)t. So, ImmL = R2
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4.2 Matrix Representation

Theorem 4.2.1. Let V,W be finite vector spaces with basis E = [v1, ..., vn], F =
[w1, ..., wm], respectively, and let L : V → W be a linear transformation.
Then there exists an m×n matrix A called the matrix representation of L
, with respect to the basis E,F , such that for any v ∈ V, [L(v)]F = A[v]E.
Moreover, A = ([L(v1)]F , [L(v2)]F , ..., [L(vn)]F )

Example 4.2.1. Find the matrix representation of the following linear
transformations

(a) L : P2 → R2, L(f(x)) =

( ∫ 1

0
f(x)dx
f(0)

)
with respect to the standard

basis

(b) L : P3 → P2, L(f(x)) = f ′(x) with respect to the standard basis

(c) L : P3 → P2, L(f(x)) = f ′(x) with respect to the basis [1−x, 2x, x2+
x], [1, x]

(d) L : P3 → P2, L(f(x)) = f ′(x) with respect to the basis [1−x, 2x, x2+
x], [x, 1]

(e) L : R4 → R2, L((x1, x2, x3, x4)
t) = (x1−x2 +x3, x4)

t with respect to
the standard basis

Solution:

(a) A = (L(1)[e1,e2], L(x)[e1,e2]) = ((1, 1)t[e1,e2], (
1
2
, 0)t[e1,e2]) =

(
1 1

2

1 0

)
.

(b) A = (L(1)[1,x], L(x)[1,x], L(x2)[1,x]) = (0[1,x], 1[1,x], 2x[1,x]) =

(
0 1 0
0 0 2

)
.

(c) A = (L(1− x)[1,x], L(2x)[1,x], L(x2 + x)[1,x]) =
(−1[1,x], 2[1,x], (2x+ 1)[1,x]) =(
−1 2 1
0 0 2

)
.

(d) A = (L(1− x)[x,1], L(2x)[x,1], L(x2 + x)[x,1]) =
(−1[x,1], 2[x,1], (2x+ 1)[x,1]) =(

0 0 2
−1 2 1

)
.
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(e) A = (L(e1)[e1,e2], L(e2)[e1,e2], L(e3)[e1,e2], L(e4)[e1,e2]) =
((1, 0)t[e1,e2], (−1, 0)t[e1,e2], (1, 0)t[e1,e2], (0, 1)t[e1,e2]) =(

1 −1 1 0
0 0 0 1

)
.



Chapter 5

Inner Products
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Chapter 6

Eigenvalues

6.1 Definitions, Examples, and Basic Prop-

erties

Definition 6.1.1. Let A be a square n × n matrix. A nonzero vector
x ∈ Rn is called an eigenvector of A iff there exists a scalar λ ∈ R such
that Ax = λx, and λ is called an the eigenvalue of A corresponding to
the eigenvector x.

Now how to find the eigenvalues an eigenvectors of a square matrix A
Let A be a square n× n matrix. Then the following are equivalent

(a) A nonzero eigenvector x ∈ Rn is an eigenvector of A corresponding
to the eigenvalue λ ∈ R.

(b) Ax = λx

(c) Ax− λInx = 0

(d) (A− λIn)x = 0

(e) The homogeneous system (A− λIn)x = 0 ha a nonzero solution x

(f) N(A− λIn) 6= {0}
(g) (A− λIn) is singular

(h) |A− λIn| = 0

59
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Definition 6.1.2. Let A be a square n × n matrix. The equation |A −
λIn| = 0 is called the characteristic equation of A, and the polynomial
pA(λ) = |A− λIn| is called the characteristic polynomial of A.

Theorem 6.1.3. Let A be a square n×n matrix. Then the eigenvalues of
A are the solutions of |A−λIn| = 0 and the corresponding eigenvectors of
an eigenvalue λ is the solution of (A−λIn)x = 0, that is the eigenvalues
are N(A− λIn)x = 0 and it is called the eigenspace of λ

Example 6.1.1. Find the eigenvalues and the corresponding eigenvector

of A =

(
1 3
0 2

)
Solution. We solve |A− λI| = 0, so we get λ = 1, λ = 2
To find the corresponding eigenvectors, we solve the homogeneous system
(A− λIn)x = 0

(a) For λ = 1, (A − 1.In)x = 0, so we solve

(
0 3
0 1

)
x = 0. We

get x = (1, 0)t an eigenvector of A corresponding to the eigenvalue
λ = 1.

(b) For λ = 2, (A − 2.In)x = 0, so we solve

(
−1 3
0 0

)
x = 0. We

get x = (3, 1)t an eigenvector of A corresponding to the eigenvalue
λ = 2.

Example 6.1.2. Find the eigenvalues and the corresponding eigenvector

of A =

(
1 2
1 1

)
Solution. We solve |A− λI| = 0, so we get (1− λ)(1− λ)− 2 = 0. So,
λ2 − 2λ− 1 = 0. By the quadratic formulae, we get λ = 1±

√
2

To find the corresponding eigenvectors we solve the homogeneous system
(A− λIn)x = 0

(a) For λ = 1 +
√

2, we solve

(
−
√

2 2

1 −
√

2

)
x = 0,

√
2R2 + R1 ⇒(

−
√

2 2
0 0

)
. We get x = (

√
2, 1)t an eigenvector of A correspond-

ing to the eigenvalue λ = 1 +
√

2.
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(b) For λ = 1 −
√

2. We solve

( √
2 2

1
√

2

)
x = 0. We get x =

(−
√

2, 1)t an eigenvector of A corresponding to the eigenvalue λ =
1−
√

2.

Example 6.1.3. Find the eigenvalues and the corresponding eigenvector

of A =

(
1 1
1 1

)
Solution. We solve |A− λI| = 0, so we get (1− λ)(1− λ)− 1 = 0. So,
λ2 − 2λ = 0. So, λ = 0, 2
To find the corresponding eigenvectors, we solve the homogeneous system
(A− λIn)x = 0

(a) For 0, we solve

(
1 1
1 1

)
x = 0. We get x = (−1, 1)t an eigenvector

of A corresponding to the eigenvalue λ = 0.

(b) For 2. We solve

(
−1 1
1 −1

)
x = 0. We get x = (1, 1)t an eigen-

vector of A corresponding to the eigenvalue λ = 2.

Similar matrices

Definition 6.1.4. A square n× n matrices A,B are called similar ma-
trices iff there exists a nonsingular matrix X such that A = XBX−1.

Theorem 6.1.5. Let A,B be a square n× n similar matrices then A,B
have the same eigenvalues.

Proof. Enough to show A,B have the same characteristic polynomials.
But PA(λ) = |A − λIn| = |XBX−1 − λIn| = |XBX−1 − λXX−1| =
|X(B − λI)X−1| = |B − λIn| = PB(λ).

Remark 6.1.6. Let A,B be a square n× n similar matrices. Then

(a) |A| = |B|
(b) A,B have the same eigenvalues, but need not have the same eigen-

vectors.

Definition 6.1.7. Let A be a square n×n matrix, the trace of A denoted
by tr(A) is the sum of the entries in the main diagonal.
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Theorem 6.1.8. Let A be a square n×n matrix with eigenvalues λ1, ..., λn.
Then

(a) |A| = λ1.....λn

(b) tr(A) = λ1 + ...+ λn

Theorem 6.1.9. Let A be a square n×n matrix. Then A is singular iff
0 is an eigenvalue

Theorem 6.1.10. Let A be a square n×n matrix. Then A and At have
the same eigenvalues

Theorem 6.1.11. Let A be an n×n matrix. If λ is an eigenvalue of A.
If n ∈ Z+, then λn is an eigenvalue of An with the same eigenvectors.

Example 6.1.4. Find the eigenvalues and the corresponding eigenvector

of A100 if A =

(
1 1
1 1

)
Solution. From Example 6.1.3 above, the eigenvalues and the corre-
sponding eigenvectors of A are: λ = 0, 2 with x = (−1, 1)t an eigenvector
of A corresponding to the eigenvalue λ = 0, and x = (1, 1)t an eigen-
vector of A corresponding to the eigenvalue λ = 2. So the eigenvalues
of A100 are 0100 = 0 with x = (−1, 1)t an eigenvector, and 2100 with

x = (1, 1)t an eigenvector. Also, A100

(
1
1

)
= 2100

(
1
1

)
=

(
2100

2100

)
Theorem 6.1.12. Let A be a square nonsingular n × n matrix. If λ
is an eigenvalue of A, then 1

λ
is an eigenvalue of A−1 with the same

eigenvectors.

Definition 6.1.13. Let A be a square n × n matrix, and let λ be an
eigenvalue of A. Then

(a) The algebraic multiplicity of λ denoted by alg(λ) is the number of
how many λ is repeated.

(b) The geometric multiplicity of λ denoted by gem(λ) is the number of
li eigenvectors of λ, that is gem(λ) = dimN(A− λI)
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6.1.1 Complex eigenvalues

Recall that a complex number is of the from x+ yi where x, y ∈ R, i2 =
−1. If z = a+ bi, then the conjugate of z denoted by z= a− bi

Theorem 6.1.14. (Fundamental theorem of algebra) Let f(z) =
cnz

n + ... + c1z + c0, c
′
is ∈ C be a complex polynomial. Then f(z) has

exactly n roots counting multiplicity.

Theorem 6.1.15. Let f(z) = cnz
n + ...+ c1z + c0, c

′
is ∈ R be a complex

polynomial with real entries. If z0 is a root of f(z), then z0 is a root

Theorem 6.1.16. Let A be a square n × n matrix with real entries,
and let λ be an eigenvalue of A with an eigenvector x. Then λ is an
eigenvalue of A with eigenvector x

Example 6.1.5. Find the eigenvalues and the corresponding eigenvector

of A =

(
1 −2
1 −1

)
Solution. We solve |A − λI| = 0, so we get (1 − λ)(−1 − λ) + 2 = 0.
So, λ2 + 1 = 0. So, λ = ∓i
To find the corresponding eigenvectors, we solve the homogeneous system
(A− λIn)x = 0

(a) For i, we solve

(
1− i −2

1 −1− i

)
x = 0, perform (1− i)R2−R−1.

We get x = (1 + i, 1)t an eigenvector of A corresponding to the
eigenvalue λ = i.

(b) x = (1 − i, 1)t an eigenvector of A corresponding to the eigenvalue
λ = −i. Do it similarly.
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6.2 Diagonalization: section3 in the book

Definition 6.2.1. A square n × n matrix A is called diagonalizable iff
A is similar to a diagonal matrix D, that iff there exist a nonsingular
matrix X, and a diagonal matrix D such that A = XDX−1, and X is
called the matrix that diagonalize A. A matrix that is not diagonalizable
is called defective.

Theorem 6.2.2. The eigenvectors corresponding to distinct eigenvalues
are li

Theorem 6.2.3. A square n× n matrix A is diagonalizable iff A has n
li eigenvectors.

Theorem 6.2.4. If all the eigenvalues of a matrix A are distinct, then
A is diagonalizable

Remark 6.2.5. Let an n × n matrix A be diagonalizable. The proof
of the above theorem gives a technique to find X,D : A = XDX−1

as follows, let the eigenvalues of A be λ1, ..., λn counting multiplicity
with corresponding eigenvectors X1, ..., Xn. Take X = (X1, ..., Xn), D =
diag(λ1, ..., λn), then A = XDX−1

Example 6.2.1. Is A =

(
1 1
1 1

)
diagonalizable, if yes find X,D such

that A = XDX−1

Solution. The eigenvalues of A are λ = 0, 2 which are distinct, so A is
diagonalizable
To find the corresponding eigenvectors, we solve the homogeneous system
(A− λIn)x = 0

(a) For 0, we get x = (−1, 1)t an eigenvector of A corresponding to the
eigenvalue λ = 0.

(b) For 2, we get x = (1, 1)t an eigenvector of A corresponding to the
eigenvalue λ = 2.

Let X =

(
−1 1
1 1

)
, D =

(
0 0
0 2

)


